Patents by Inventor Steffen Weiss

Steffen Weiss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12193753
    Abstract: A system is provided for stimulating renal nerves. The system includes an interstitial device to provide stimulation and denervation of the renal nerves from outside the renal artery. The interstitial device extends through non-vascular tissue and into a periarterial space. The system also includes a control unit in communication with the interstitial device, configured to: obtain, from a sensor, first information pertaining to a blood pressure or heart rate; stimulate, using one or more electrodes of the interstitial device, renal sympathetic nerves associated with the renal artery; and obtain, from the sensor, second information pertaining to the blood pressure or heart rate of the subject. Based on a difference between the first information and the second information, the control unit determines whether the subject is suitable for a sympathetic denervation procedure and causes the interstitial device to perform the sympathetic denervation procedure if the subject is suitable.
    Type: Grant
    Filed: January 9, 2023
    Date of Patent: January 14, 2025
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Steffen Weiss
  • Patent number: 12186068
    Abstract: The present disclosure relates to an ear protection system (200) for a medical imaging device. It comprises an ear protection device (210), adapted to be fitted around or in the ears of a patient (P) to be imaged, and at least comprising a first communication interface (211) and at least one sensor device (212) adapted to determine a measurement of noise passing through the ear protection device (210) towards the ears of the patient. The system (200) further comprises a controllable signal emitter (230), adapted to output a proxy signal representing an expected imaging device noise and to be measured by the at least one sensor device (212), and a patient assistance device (220), adapted to assist the patient to fit the ear protection device (210), and at least comprising a second communication interface.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: January 7, 2025
    Assignee: Koninklijke Philips N.V.
    Inventors: Steffen Weiss, Mark Thomas Johnson
  • Publication number: 20240426953
    Abstract: This disclosure provides a method for adapting at least one coil of an MR imaging device, the method comprising the steps: providing, by means of a processor, shape data of a patient (S100); calculating and generating, by means of the processor, a control signal for adapting the at least one coil of the MR imaging device based on the provided shape data of the patient (S200), wherein the generated control signal is configured for adapting a position of said coil to a target position and for adapting a shape of said coil to a target shape; adapting, by means of the processor, the position and the shape of said coil based on the generated control signal (S300); receiving, by means of the processor, current imaging data of the patient from the MR imaging device using the adapted coil (S400); evaluating, by means of the processor, the position and shape of said coil based on the received imaging data and determining an evaluation result (S500).
    Type: Application
    Filed: September 1, 2021
    Publication date: December 26, 2024
    Inventors: Christoph Leussler, Steffen Weiss, Gereon Vogtmeier, Mark Thomas Johnson, Daniel Wirtz, Rajendra Singh Sisodia
  • Patent number: 12153105
    Abstract: A magnetic resonance examination system with an examination zone (11) and comprising a camera (21) and non-metallic mirror (22), in particular within the examination zone (11), arranging an optical pathway (23) between a portion of the examination zone (11), via the non-metallic mirror (22), and the camera (21). The camera can obtain image information from that portion even if the direct line of sight (28) is blocked. The non-metallic mirror is a dielectric mirror having a macroscopically grated base.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: November 26, 2024
    Assignee: Koninklijke Philips N.V.
    Inventors: Steffen Weiss, Jan Hendrik Wuelbern, Christoph Günther Leussler, Julien Thomas Senegas
  • Publication number: 20240385266
    Abstract: A system includes a magnetic imaging apparatus and a monitoring system. The magnetic imaging apparatus has an examination zone. The monitoring system includes a camera and a non-metallic mirror. The non-metallic mirror is disposed within the examination zone and provides an optical pathway between ay least a portion of the examination zone and the camera. The non-metallic mirror comprises a base plate having a macroscopically grated base on one side of the base plate. The macroscopically grated base comprises a plurality of patches. At least some of the patches are tilted at corresponding angles relative to a normal to a planar extension of the base plate. The corresponding angles establish a tilt to an angle of reflection for light from and/or to the examination zone.
    Type: Application
    Filed: July 30, 2024
    Publication date: November 21, 2024
    Inventors: Steffen WEISS, Jan Hendrik WUELBERN, Christoph Günther LEUSSLER, Julien Thomas SENEGAS
  • Publication number: 20240346944
    Abstract: A user guidance system (SYS) and related method. The system comprises an interface (IN) for receiving a specification of a medical protocol for a given patient, the specification defining a sequence of medical action points. A synthesizer (S) of the system is configured to synthesize a media sequence in accordance with the sequence of medical action points, to obtain a synthesized media sequence for the said patient, the media sequence configurable to guide the patient in a medical procedure, based on the protocol. The media sequence may be used to support imaging protocols to encourage patient compliance, and hence better imaging for example.
    Type: Application
    Filed: August 9, 2022
    Publication date: October 17, 2024
    Inventors: Gereon Vogtmeier, Rajendra Singh Sisodia, Christoph Günther Leussler, Steffen Weiss, Mark Thomas Johnson
  • Publication number: 20240324971
    Abstract: A synchronisation system comprises aa sensor arrangement to detect a trigger base event. An analysis module and an arithmetic unit are configured to access prior information on a time delay between the sensor arrangement's detection of the trigger base and a starting point of an acquisition time interval for acquiring imaging data. The starting point is computed of the acquisition time interval from the detected trigger base event and the prior information of the time delay. The time delay between the sensor arrangement's detection of the trigger base event and the acquisition time interval may vary between individual subjects, but for each individual subject the time delay is well reproducible and hence on a per subject basis may be calibrated for.
    Type: Application
    Filed: July 11, 2022
    Publication date: October 3, 2024
    Inventors: Steffen Weiss, Wenjin Wang, Albertus Cornelis Den Brinker, Albert Garcia Tormo
  • Publication number: 20240324889
    Abstract: The present invention relates to a medical imaging system (1) comprising a camera (21) for monitoring a subject (14) under examination in an examination zone (11) of the system, and a mirror assembly (22) in the examination zone to reflect light from a target area on the body of the subject onto the camera. The mirror assembly (22) comprises a curved reflective surface and/or a plurality of reflective surfaces oriented in different directions, such that light is reflected from the target area into the camera by magnifying the reflected image and/or by projecting multiple copies of the same target area into different areas of the camera image and/or such that light is both reflected from the target area into the camera as reflected from a light source at a different position as the camera onto the target area.
    Type: Application
    Filed: July 19, 2022
    Publication date: October 3, 2024
    Inventors: Steffen Weiss, Julien Thomas Senegas
  • Publication number: 20240320834
    Abstract: A method (100) is disclosed for determining a signal indicative of a state of a subject during a diagnostic imaging or therapeutic procedure based on camera observation. The method comprises acquiring (101) camera images from a camera configured to monitor a body part of the subject during the procedure, e.g. via a reflection thereof in a reflective surface. The method comprises detecting (102) a shape or contour of the reflective surface in at least one acquired camera image to define a region of interest in the image that contains image information corresponding to the body part of interest, and segmenting (103) the region of interest in one or more camera images to select pixels that correspond to a feature of the body part of interest. The method also comprises determining (105) the signal indicative of the state of the subject from the selection. The invention further relates to a corresponding device, system and computer-program.
    Type: Application
    Filed: July 22, 2022
    Publication date: September 26, 2024
    Inventors: Wenjin Wang, Albertus Cornelis Den Brinker, Albert Garcia Tormo, Ioannis Pappous, Steffen Weiss, Jan Hendrik Wuelbern, Peter Caesar Mazurkewitz, Julien Thomas Senegas, Thomas Netsch
  • Patent number: 12099103
    Abstract: Embodiments of the present application provide a radio frequency head coil (300), RE head coil. The RE head coil (300) comprises a coil former (310) comprising at least a first leg and a second leg arranged at a distance from each other to define a space there between, the coil former (310) being at least sectionally flexible and having at least one first fastening portion (315, 316) arranged adjacent to the space (314), and a respiratory mask (320) comprising a gas outlet (324) and at least one second fastening portion (322, 323), wherein in an operable condition in which the RE head coil (300) is adapted to be arranged at least in sections around a head of a patient (S) and in which the second fastening portion (322, 323) is adapted to be fastened to the first fastening portion (315, 316), the gas outlet (324) is disposed within the space (314).
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: September 24, 2024
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Gunther Leussler, Michael Gunter Helle, Daniel Wirtz, Gereon Vogtmeier, Steffen Weiss, Sunil Kumar Vuppala, Rajendra Singh Sisodia
  • Publication number: 20240277294
    Abstract: The present invention relates to monitoring motion in diagnostic imaging or radiation therapy. In order to improve workflow, a device is proposed that comprises an input unit, a processing unit, and an output unit. The input unit is configured to receive an electroencephalogram (EEG) signal measured from a patient. The processing unit is configured to determine a readiness potential (RP) based on the received EEG signal, to determine whether patient motion is likely to happen based on the received EEG signal, and to provide a control signal via the output unit as output, if it is predicted that patient motion is likely to happen. The control signal is usable for controlling an apparatus to perform a function to reduce motion artefacts during the medical imaging or to assure that radiation dose is delivered according to a planned dose map during the radiation therapy.
    Type: Application
    Filed: July 15, 2022
    Publication date: August 22, 2024
    Inventors: Christoph Günther Leussler, Steffen Weiss
  • Publication number: 20240264260
    Abstract: Patient motion is the most common cause of artefacts in medical imaging. There is therefore provided a computer-implemented method for performing motion suppression in a medical imaging apparatus. The method comprises: obtaining image data defining an image to be displayed to a patient within a bore of the medical imaging apparatus; controlling a display device to display the image to the patient in the bore; obtaining data indicating a real-time position of an anatomical region of interest comprising the head and/or eyes of the patient during a medical imaging scan; detecting movement of the anatomical region of interest using the data indicating the real-time position; and in response to detecting the movement, adapting the displayed image to perform patient motion suppression by relocating the displayed image to a location relative to the bore which urges the patient to return their head and/or eyes to their original position.
    Type: Application
    Filed: May 27, 2022
    Publication date: August 8, 2024
    Inventors: Steffen Weiss, Christoph Günther Leussler
  • Publication number: 20240252056
    Abstract: The present invention relates to a method for operating a medical imaging system (100), and to a respective medical imaging system (100) operable by this method.
    Type: Application
    Filed: May 25, 2022
    Publication date: August 1, 2024
    Inventors: Gereon Vogtmeier, Steffen Weiss
  • Patent number: 12033766
    Abstract: A method for conditioning of spent ion exchange resins from nuclear facilities comprises the steps of: mixing the spent ion exchange resins with water to form a reaction mixture; setting and controlling the pH of the reaction mixture in a range from 1.0 to 3.5, preferably in a range from 2.0 to 3.0; adding an oxidant to the reaction mixture, with the temperature of the reaction mixture maintained at 90°° C. or less so that the spent ion exchange resin and the oxidant react with each other to form an aqueous reaction solution comprising the organic reaction products of the spent ion exchange resin; and electrochemically oxidizing the organic reaction products, wherein carbon dioxide is produced and a carbon-depleted aqueous reaction solution having a TOC (total organic carbon) value of less than 50 ppm is obtained. Furthermore, an apparatus for the conditioning of spent ion exchange resins from nuclear facilities is described.
    Type: Grant
    Filed: November 28, 2019
    Date of Patent: July 9, 2024
    Assignee: FRAMATOME GMBH
    Inventors: Gert Seybert, Robert Lehr, Bertram Zeiler, Philip Schuberth, Steffen Weiss
  • Publication number: 20240206754
    Abstract: A vital sign detection system comprises a camera (10) configured to acquire image frames from an examination zone (42). A signal processor (11) derives vital sign information from the acquired image frames. An illumination controller (12) controls illumination of the examination zone, generates temporal modulations of the illumination and synchronise the camera frame rate with the modulated illumination. The vital sign detection system of the invention achieves to increase the dynamic range and hence also the signal-to-noise ratio of the vital sign signal.
    Type: Application
    Filed: July 26, 2022
    Publication date: June 27, 2024
    Inventors: Steffen Weiss, Wenjin Wang, Albert Garcia Tormo, Jan Hendrik Wuelbern, Albertus Cornelis Den Brinker
  • Patent number: 11995825
    Abstract: The present disclosure relates to a medical imaging method for motion artifact detection. The method comprises: using (201-203) a k-space acquisition property for generating a motion-corrupted image having a motion artifact as caused by a first initial motion pattern such that the motion artifact is defined as function of a feature matrix and the motion-corrupted image; initializing (205) at least one feature map of a convolutional neural network, CNN, with values of the convolution matrix; training (207) the initialized CNN to obtain, in training images, motion artifacts caused by a second training motion pattern; obtaining (209) a motion artifact in an input image using the trained CNN.
    Type: Grant
    Filed: May 25, 2020
    Date of Patent: May 28, 2024
    Assignee: Koninklijke Philips N.V.
    Inventor: Steffen Weiss
  • Patent number: 11994567
    Abstract: A magnetic resonance imaging antenna (114) comprising one or more coil elements (115) is disclosed. The magnetic resonance imaging antenna further comprises a radio frequency system (116) coupled to the one or more coil elements. The magnetic resonance imaging antenna further comprises a gas inlet (200) configured for receiving a pressurized gas. The magnetic resonance imaging antenna further comprises a gas outlet (202) configured for venting the pressurized gas. The magnetic resonance imaging antenna further comprises an electrical generator (117) configured for converting mechanical energy resulting from passing the pressurized gas from the gas inlet to the gas outlet into electricity while in the presence of an external magnetic field. The electrical generator is configured to power the radio frequency system using the electricity.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: May 28, 2024
    Assignee: Koninklijke Philips N.V.
    Inventors: Bernhard Gleich, Steffen Weiss
  • Patent number: 11978551
    Abstract: The invention provides for a medical instrument (100, 300) comprising: a subject support (110) comprising a support surface (112); a camera system (118); and a signal system (148). The execution of the machine executable instructions (152) cause a processor (142) controlling the medical instrument to: receive (400) a list of selected objects (160) each with a selected coordinate (162); and signal (402) the list of selected objects.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: May 7, 2024
    Assignee: Koninklijke Philips N.V.
    Inventors: Sascha Krueger, Peter Caesar Mazurkewitz, Julien Thomas Senegas, Steffen Weiss, Jukku Iimari Tanttu
  • Publication number: 20240094319
    Abstract: There is provided a method of determining a scan sequence for magnetic resonance imaging—MRI. The method comprises: receiving an indication of one or more selected imaging parameters for the MRI; and based on the selected imaging parameters, determining the scan sequence usable by an MRI apparatus to perform the MRI, wherein determining the scan sequence comprises configuring the scan sequence to modulate gradient noise arising from the MRI apparatus during the MRI to deliver a first audible signal to the patient, wherein the first audible signal is configured to perform auditory stimulation of slow wave activity in the patient.
    Type: Application
    Filed: January 18, 2022
    Publication date: March 21, 2024
    Inventors: Mark Thomas Johnson, Steffen Weiss, Marieke Van Dooren, Jan Hendrik Wuelbern, Christoph Günther Leussler, Rajendra Singh Sisodia
  • Patent number: 11906608
    Abstract: Disclosed herein is a medical system (100, 300, 500) comprising a memory (110) storing machine executable instructions (120) and a convolutional neural network (122). The convolutional neural network is configured for receiving an initial Dixon magnetic resonance image (124, 126) as input. The convolutional neural network is configured for identifying one or more water-fat swap regions (128) in the initial Dixon magnetic resonance image. The medical system further comprises a processor (104) for controlling the medical system. Execution of the machine executable instructions causes the processor to: receive (200) the initial Dixon magnetic resonance image; and receive (204) the one or more water-fat swap regions from the convolutional neural network in response to inputting the initial Dixon magnetic resonance image into the convolutional neural network.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: February 20, 2024
    Assignee: Koninklijke Philips N.V.
    Inventors: Karsten Sommer, Steffen Weiss, Holger Eggers