Patents by Inventor Stein Kuiper

Stein Kuiper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9733466
    Abstract: An objective lens system for an optical biopsy device has a lens that comprises a first part configured for viewing at a first magnification, and a second part configured for viewing at a second magnification. The second magnification is substantially different from the first magnification. The first magnification enables viewing a larger area of a target and the second magnification enables viewing the target at a cellular level with high sensitivity and specificity. Combining viewing at two different magnifications in a single objective lens results in a compact optical biopsy device.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: August 15, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Stein Kuiper
  • Patent number: 9537047
    Abstract: A method for fabricating an LED/phosphor structure is described where an array of blue light emitting diode (LED) dies are mounted on a submount wafer. A phosphor powder is mixed with an organic polymer binder, such as an acrylate or nitrocellulose. The liquid or paste mixture is then deposited over the LED dies or other substrate as a substantially uniform layer. The organic binder is then removed by being burned away in air, or being subject to an O2 plasma process, or dissolved, leaving a porous layer of phosphor grains sintered together. The porous phosphor layer is impregnated with a sol-gel (e.g., a sol-gel of TEOS or MTMS) or liquid glass (e.g., sodium silicate or potassium silicate), also known as water glass, which saturates the porous structure. The structure is then heated to cure the inorganic glass binder, leaving a robust glass binder that resists yellowing, among other desirable properties.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: January 3, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Grigoriy Basin, Stein Kuiper, Paul Scott Martin
  • Publication number: 20160233377
    Abstract: A method for fabricating an LED/phosphor structure is described where an array of blue light emitting diode (LED) dies are mounted on a submount wafer. A phosphor powder is mixed with an organic polymer binder, such as an acrylate or nitrocellulose. The liquid or paste mixture is then deposited over the LED dies or other substrate as a substantially uniform layer. The organic binder is then removed by being burned away in air, or being subject to an O2 plasma process, or dissolved, leaving a porous layer of phosphor grains sintered together. The porous phosphor layer is impregnated with a sol-gel (e.g., a sol-gel of TEOS or MTMS) or liquid glass (e.g., sodium silicate or potassium silicate), also known as water glass, which saturates the porous structure. The structure is then heated to cure the inorganic glass binder, leaving a robust glass binder that resists yellowing, among other desirable properties.
    Type: Application
    Filed: April 18, 2016
    Publication date: August 11, 2016
    Inventors: Grigoriy Basin, Stein Kuiper, Paul Scott Martin
  • Patent number: 9379291
    Abstract: The invention provides a lighting unit comprising a light source and a light conversion layer, wherein the light source is configured to provide light source light and comprises a light emitting diode (LED), wherein the light conversion layer comprises an alkali silicate matrix containing a particulate luminescent material, and wherein the light conversion layer is configured to convert at least part of the light source light into luminescent material light.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: June 28, 2016
    Assignee: Koninklijke Philips N.V.
    Inventors: Stein Kuiper, Grigoriy Basin
  • Patent number: 9337398
    Abstract: A method for fabricating an LED/phosphor structure is described where an array of blue light emitting diode (LED) dies are mounted on a submount wafer. A phosphor powder is mixed with an organic polymer binder, such as an acrylate or nitrocellulose. The liquid or paste mixture is then deposited over the LED dies or other substrate as a substantially uniform layer. The organic binder is then removed by being burned away in air, or being subject to an O2 plasma process, or dissolved, leaving a porous layer of phosphor grains sintered together. The porous phosphor layer is impregnated with a sol-gel (e.g., a sol-gel of TEOS or MTMS) or liquid glass (e.g., sodium silicate or potassium silicate), also known as water glass, which saturates the porous structure. The structure is then heated to cure the inorganic glass binder, leaving a robust glass binder that resists yellowing, among other desirable properties.
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: May 10, 2016
    Assignee: Koninklijke Philips N.V.
    Inventors: Grigoriy Basin, Stein Kuiper, Paul Scott Martin
  • Patent number: 9128016
    Abstract: A method of analyzing a sample fluid containing organic microobjects is proposed. The method comprises the steps of: up-concentrating (S1) the microobjects by removing, in a total time T1, a volume V1 of the sample fluid from the upconcentrate sample microobjects; immersing (S2) the microobjects in a transfer fluid, or leaving the microobjects in a remaining portion of the sample fluid, the remaining portion of the sample fluid then providing the transfer fluid; filtering (S3), in a total time T3, a volume V3 of the transfer fluid by a filter, thereby accumulating the microobjects on the filter; and generating (S4) an image of the microobjects accumulated on the filter; wherein the throughput V1/T1 of the step of up-concentrating (S1) is greater than the throughput V1/T1, of the step of filtering (S3). The filter may be a second filter, and the step of up-concentrating (S1) may involve: filtering the sample fluid by a first filter, thereby accumulating the microobjects on the first filter.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: September 8, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Bas Hulsken, Stein Kuiper, Sjoerd Stallinga, Bo Joakim Isaksson, Mark W. G. Ponjee, Bart E. G. J. Van Meerbergen, Zeynep S. Unay
  • Publication number: 20150221833
    Abstract: The invention provides a lighting unit comprising a light source and a light conversion layer, wherein the light source is configured to provide light source light and comprises a light emitting diode (LED), wherein the light conversion layer comprises an alkali silicate matrix containing a particulate luminescent material, and wherein the light conversion layer is configured to convert at least part of the light source light into luminescent material light.
    Type: Application
    Filed: December 5, 2012
    Publication date: August 6, 2015
    Inventors: Stein Kuiper, Grigoriy Basin
  • Patent number: 9057729
    Abstract: The invention relates to a method of determining in vitro the amount of nuclear DNA within a human or animal cell using UV absorption measurement with UV light. The invention also relates to a method for detecting in vitro cancerous cells in a biological sample relying on the aforementioned principles. The invention also relates to an in vitro method of diagnosing or predicting the likely occurrence of cancer in a human or animal subject.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: June 16, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Erik Robbert Vossenaar, Gerhard Spekowius, Nijs Cornelis Van Der Vaart, Stein Kuiper
  • Patent number: 9041792
    Abstract: At least two chemically different substances of interest of an unstained biological specimen that for each a substance image is generated, indicating for every region of the image an amount of the substance. A multicolor image is generated on the basis of the substance images.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: May 26, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Marinus B. Van Leeuwen, Stein Kuiper
  • Publication number: 20150041841
    Abstract: A method for fabricating an LED/phosphor structure is described where an array of blue light emitting diode (LED) dies are mounted on a submount wafer. A phosphor powder is mixed with an organic polymer binder, such as an acrylate or nitrocellulose. The liquid or paste mixture is then deposited over the LED dies or other substrate as a substantially uniform layer. The organic binder is then removed by being burned away in air, or being subject to an O2 plasma process, or dissolved, leaving a porous layer of phosphor grains sintered together. The porous phosphor layer is impregnated with a sol-gel (e.g., a sol-gel of TEOS or MTMS) or liquid glass (e.g., sodium silicate or potassium silicate), also known as water glass, which saturates the porous structure. The structure is then heated to cure the inorganic glass binder, leaving a robust glass binder that resists yellowing, among other desirable properties.
    Type: Application
    Filed: March 20, 2013
    Publication date: February 12, 2015
    Inventors: Grigoriy Basin, Stein Kuiper, Paul Scott Martin
  • Patent number: 8854739
    Abstract: The invention relates to an electrowetting-on-dielectric device (200). This is an electro wetting device comprising one or more cells, wherein each cell comprises an electrowetting composition of first and second immiscible fluids, the first fluid being an electrolytic solution (240), a first electrode (230), separated from the electrowetting composition by a dielectric (231), and a voltage source (260) for applying an operating voltage difference between the first electrode (230) and the electrolytic solution to operate the electrowetting device. According to the invention, the first electrode (230) of the electrowetting-on-dielectric device (200) comprises a valve metal, and the electrolytic solution (240) is capable of anodizing the valve metal to form a metal oxide at the operating voltage difference. This provides the electrowetting-on-dielectric device (200) with self-repairing properties thereby preventing breakdown of the dielectric.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: October 7, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Stein Kuiper, Johannes Wilhelmus Weekamp
  • Patent number: 8764665
    Abstract: An acoustic probe (100, 300) includes an acoustic transducer (15, 444), and a plurality of variably-refracting acoustic lens elements (10, 210a, 210b, 442) coupled to the acoustic transducer. Each variably-refracting acoustic lens element has at least a pair of electrodes (150, 160) adapted to adjust at least one characteristic of the variably-refracting acoustic lens element in response to a selected voltage applied across the electrodes. In one embodiment, each variably-refracting acoustic lens element includes a cavity, first and second fluid media (141, 142) disposed within the cavity, and the pair of electrodes. The speed of sound of an acoustic wave in the first fluid medium is different than the speed of sound of the acoustic wave in the second fluid medium. The first and second fluid media are immiscible with respect to each other, and the first fluid medium has a substantially different electrical conductivity than the second fluid medium.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: July 1, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Christopher Stephen Hall, Chien Ting Chin, Jan Frederik Suijver, Bernardus Hendrikus Wilhelmus Hendriks, Stein Kuiper
  • Patent number: 8702612
    Abstract: A catheter apparatus includes an elongated body having proximal and distal ends, and an acoustic transducer disposed proximate the distal end of the elongated body. A variably-refracting acoustic lens is provided to dynamically adjust a direction associated with an acoustic wave coupled to the acoustic transducer in response to one or more control signals provided thereto.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: April 22, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Stein Kuiper, Jan Frederik Suijver, Ronald Tabaksblat, Nijs Cornelis Van Der Vaart, Christopher Stephen Hall, Anna Teresa Fernandez
  • Patent number: 8422338
    Abstract: The disclosure is directed to a system for variably refracting, and is transparent for, ultrasound as well as for light. By choosing liquids with the right optical and acoustical properties, it is possible to variably refract (including focusing and deflecting or steering) ultrasound while not affecting the refraction of light, or vice versa. Two lenses in series, or preferably one lens, allow for variably refracting ultrasound and light.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: April 16, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Stein Kuiper, Bernardus Hendrikus Wilhelmus Hendriks, Jan Frederik Suijver
  • Patent number: 8360963
    Abstract: An imaging system with two modalities has a catheter with an optical lens system situated at an end of the catheter and optically connected to optical guide. The lens system has a numerical aperture which is changeable between a first aperture and a second larger numerical aperture. The imaging system also has an imaging unit for optical imaging with the catheter. First and second imaging modalities are optically connectable with the optical lens system of the catheter. The imaging system can change between imaging in two modes: (1) the first numerical aperture of the optical lens system and the first imaging modality of the imaging unit, and (2) the second numerical aperture of the optical lens system and the second imaging modality of the imaging unit.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: January 29, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Gert T Hooft, Stein Kuiper
  • Publication number: 20120324768
    Abstract: A steam iron (500) comprises a housing (520) that includes a water tank (580), a steam chamber (600) and a pressure equalization conduit (760). The housing (520) includes an airing means (660). The steam iron is further provided with a mechanism for allowing air selectively into the water tank (580). The mechanism comprises a steam trigger (680) that is arranged to close or open the pressure equalization conduit (760) and the airing means (660) inversely. The mechanism may also comprise a spring loaded plunger or an electronic hand sensor.
    Type: Application
    Filed: August 8, 2007
    Publication date: December 27, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Chandra Mohan Janakiraman, Mohankumar Valiyambath Krishnan, Stein Kuiper
  • Publication number: 20120200939
    Abstract: The invention relates to an electrowetting-on-dielectric device (200). This is an electro wetting device comprising one or more cells, wherein each cell comprises an electrowetting composition of first and second immiscible fluids, the first fluid being an electrolytic solution (240), a first electrode (230), separated from the electrowetting composition by a dielectric (231), and a voltage source (260) for applying an operating voltage difference between the first electrode (230) and the electrolytic solution to operate the electrowetting device. According to the invention, the first electrode (230) of the electrowetting-on-dielectric device (200) comprises a valve metal, and the electrolytic solution (240) is capable of anodizing the valve metal to form a metal oxide at the operating voltage difference. This provides the electrowetting-on-dielectric device (200) with self-repairing properties thereby preventing breakdown of the dielectric.
    Type: Application
    Filed: September 29, 2010
    Publication date: August 9, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Stein Kuiper, Johannes Wilhelmus Weekamp
  • Patent number: 8233221
    Abstract: An adjustable fluid type lens system is provided that allows e.g. ultrasound imaging through the lens during adjustment of the lens. The lens includes a container enclosing two immiscible fluids, e.g. water and oil, being in contact with each other at an interface. Incoming waves are then refracted at this interface. The shape of the interface, and thereby the refraction property, is adjustable by adjusting a voltage applied to the lens. The two fluids are selected such that they together exhibit a mechanical damping which is critical or near critical. A control circuit generates the electric voltage for adjusting the refraction from one value to another, the control circuit being arranged to change the electric voltage such that a rate of voltage change is limited to avoid oscillation of the interface, thereby adjusting refraction of incoming waves at the interface in a continuous manner.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: July 31, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Jan Frederik Suijver, Christopher Stephen Hall, Anna Teresa Fernandez, Stein Kuiper, Yan Shi
  • Patent number: 8139104
    Abstract: The present invention relates to an autostereoscopic display device, comprising an imaging layer (9) and a lens layer (10). The lens layer (10) serves to project different content from the imaging layer (9) to the left and right eyes, respectively, of a user. The lens layer (10) comprises lens cells (12), enclosing two fluids (13, 14) with different refractive indices. The shape of the interface between the fluids may be changed using electrowetting, by means of two individually controllable electrodes (21, 22) at the sides of each lens cell (12). The display device further comprises a user head tracking device and means for controlling the lens cell electrodes depending on a detected user head position. This allows the display device to display a correct 3D-image, even if the user moves his head.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: March 20, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Gerardus Johannes Josephus Vos, Stein Kuiper, Bernardus Hendrikus Wilhelmus Hendriks, Bas Jan Emile Van Rens
  • Publication number: 20120034623
    Abstract: A method of analyzing a sample fluid containing organic microobjects is proposed. The method comprises the steps of: up-concentrating (S1) the microobjects by removing, in a total time T1, a volume V1 of the sample fluid from the upconcentrate sample microobjects; immersing (S2) the microobjects in a transfer fluid, or leaving the microobjects in a remaining portion of the sample fluid, the remaining portion of the sample fluid then providing the transfer fluid; filtering (S3), in a total time T3, a volume V3 of the transfer fluid by a filter, thereby accumulating the microobjects on the filter; and generating (S4) an image of the microobjects accumulated on the filter; wherein the throughput V1/T1 of the step of up-concentrating (S1) is greater than the throughput V1/T1, of the step of filtering (S3). The filter may be a second filter, and the step of up-concentrating (S1) may involve: filtering the sample fluid by a first filter, thereby accumulating the microobjects on the first filter.
    Type: Application
    Filed: April 14, 2010
    Publication date: February 9, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Bas Hulsken, Stein Kuiper, Sjoerd Stallinga, Bo Joakim Isaksson, Mark W.G. Ponjee, Bart E.G.J. Van Meerbergen, Zeynep S. Unay