Patents by Inventor Sten A. Wallin

Sten A. Wallin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240022461
    Abstract: There is disclosed a method of operating a radio node in a wireless communication network. The method includes communicating based on a signaling structure, the signaling structure pertaining to a time domain interval and comprising a plurality of symbol time intervals, wherein to each symbol time interval, there is associated one cyclic prefix interval of a cyclic prefix interval type of a set of at least two types, wherein a first type pertains to a cyclic prefix interval corresponding to a first number N of processing samples, and a second type pertains to a cyclic prefix interval corresponding to a second number M of processing samples, wherein M is larger than N, and wherein both N and M are multiples of a base factor B. The disclosure also pertains to related devices and methods.
    Type: Application
    Filed: November 27, 2020
    Publication date: January 18, 2024
    Inventors: Stefan RYDBACK, Stefan HAMRIN, Anders ELGCRONA, Tommy LINDGREN, Sten WALLIN
  • Patent number: 11777619
    Abstract: Methods for determining calibration parameters to correct for frequency responses of one or more dielectric waveguides coupling a control unit to a first antenna node or to a series of antenna nodes that includes the first antenna node. An example method comprises transmitting, via a first dielectric waveguide coupling the control unit to the first antenna node, a radiofrequency (RF) test signal having a signal bandwidth covering a bandwidth of interest. The method further comprises receiving, via a second dielectric waveguide coupling the control unit to the first antenna node, a looped-back version of the transmitted RF test signal, and estimating a first one-way frequency response corresponding to the first (or second) dielectric waveguide, based on the RF test signal and the received loop-back version of the transmitted RF test signal.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: October 3, 2023
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Magnus Nilsson, Peter Jakobsson, Per Ingelhag, Sten Wallin
  • Publication number: 20230198588
    Abstract: Disclosed is a method for analog beamforming performed by a transmitter (110) of a wireless communication network (100). The transmitter (110) comprises a plurality of antenna branches (114, 115, 116), each antenna branch comprising an antenna element (111, 112, 113). The method comprises, for each antenna branch (114, 115, 116), obtaining a first and a second signal of an analog radio signal, the first and the second signal being split from the analog radio signal and the analog radio signal being the same at each of the antenna branches, and obtaining information indicating a branch-specific phase-shift angle and a branch-specific amplitude determined from information identifying a radiation pattern comprising at least two directions for wireless transmission to at least one receiver (120).
    Type: Application
    Filed: December 4, 2020
    Publication date: June 22, 2023
    Applicant: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Miguel BERG, Tomas ANDREASON, Leonard REXBERG, Örjan RENSTRÖM, Sten WALLIN
  • Publication number: 20230155286
    Abstract: Disclosed is a transmitter configured for analog beam steering, the transmitter comprising a plurality of antenna branches, each having an antenna (326). The transmitter comprises, at each of the antenna branches, a signal splitter (308) for splitting an analog radio signal into a number of beam signals, the number of beam signals equals a number of desired beams to be transmitted. Further, the transmitter comprises, for each of the number of beam signals, a phase shifter (310, 312) for phase shifting the beam signal according to a phase shift setting for that beam and for that antenna branch, the phase shift settings being taken from a single look-up table, and a signal combiner (314) for combining the phase shifted beam signals into one combined signal. Further, the transmitter is arranged for transmitting the combined signal from the antenna (326) of that antenna branch towards a receiver.
    Type: Application
    Filed: April 2, 2020
    Publication date: May 18, 2023
    Applicant: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Leonard REXBERG, Örjan RENSTRÖM, Sten WALLIN
  • Publication number: 20230080607
    Abstract: Methods for determining calibration parameters to correct for frequency responses of one or more dielectric waveguides coupling a control unit to a first antenna node or to a series of antenna nodes that includes the first antenna node. An example method comprises transmitting, via a first dielectric waveguide coupling the control unit to the first antenna node, a radiofrequency (RF) test signal having a signal bandwidth covering a bandwidth of interest. The method further comprises receiving, via a second dielectric waveguide coupling the control unit to the first antenna node, a looped-back version of the transmitted RF test signal, and estimating a first one-way frequency response corresponding to the first (or second) dielectric waveguide, based on the RF test signal and the received loop-back version of the transmitted RF test signal.
    Type: Application
    Filed: February 9, 2021
    Publication date: March 16, 2023
    Inventors: Magnus Nilsson, Peter Jakobsson, Per Ingelhag, Sten Wallin
  • Publication number: 20230073740
    Abstract: In an example embodiment, a system comprises a chain of serially coupled nodes, including a central processing node (CPN) and one or more radio communications nodes (RCNs). The CPN couples to a first RCN in the chain via a dielectric waveguide (DWG) link and any further RCNs in the chain are successively connected in serial fashion from the first RCN via further (DWG) links. The CPN generates outbound radio carrier signals that are waveguide-propagated in a downstream direction of the chain, for over-the-air (OTA) by targeted ones of the RCNs, while radio carrier signals received via OTA reception by respective ones of the RCNs are waveguide propagated as inbound radio signals in an upstream direction of the chain, for processing by the CPN. Advantages from he contemplated system include greatly simplified implementation of the RCNs, with lower cost and power consumption. Further, strategic placement of failover CPNs and DWG links provide for continued operation in the face of CPN or DWG link failures.
    Type: Application
    Filed: February 9, 2021
    Publication date: March 9, 2023
    Inventors: Magnus Nilsson, Peter Jakobsson, Per Ingelhag, Sten Wallin, Joakim Plahn, Martin Isberg, Torsten Carlsson, Peter Svensson, Agneta Ljungbro, Örjan Renström, Dandan Hao
  • Publication number: 20160329585
    Abstract: The present invention is directed to a microbial fuel cell comprising: A) an anode containing one or more conductive materials which is arranged to provide flow paths for electrons through the conductive material and to form flow paths for fluid material through passages formed in the conductive material, B) electrogenic microbes in electrical contact with the anode, C) biodegradable material disposed in a fluid, D) a cathode containing one or more conductive materials adapted such that the cathode can be contacted with an oxygen containing gas, E) an anion exchange membrane disposed between the anode and the cathode; and, F) a conduit for electrons which forms a circuit in contact with both the anode and the cathode.
    Type: Application
    Filed: December 16, 2014
    Publication date: November 10, 2016
    Inventors: Sten A. Wallin, Scott T. Matteucci
  • Patent number: 9101906
    Abstract: The present invention provides porous body precursors and shaped porous bodies. Also included are catalysts and other end-use products based upon the shaped porous bodies and thus the porous body precursors. Finally, processes for making these are provided. The porous body precursors comprise a precursor alumina blend capable of enhancing one or more properties of a shaped porous body based thereupon. The need to employ modifiers to achieve a similar result may thus be substantially reduced, or even avoided, and cost savings are thus provided, as well as savings in time and equipment costs.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: August 11, 2015
    Assignee: Dow Technology Investments LLC
    Inventors: Todd R. Bryden, Kevin E. Howard, Peter C. Lebaron, Sten A. Wallin
  • Publication number: 20140206528
    Abstract: The present invention provides porous body precursors and shaped porous bodies. Also included are catalysts and other end-use products based upon the shaped porous bodies and thus the porous body precursors. Finally, processes for making these are provided. The porous body precursors comprise a precursor alumina blend capable of enhancing one or more properties of a shaped porous body based thereupon. The need to employ modifiers to achieve a similar result may thus be substantially reduced, or even avoided, and cost savings are thus provided, as well as savings in time and equipment costs.
    Type: Application
    Filed: March 26, 2014
    Publication date: July 24, 2014
    Applicant: DOW TECHNOLOGY INVESTMENTS, LLC
    Inventors: Todd R. Bryden, Kevin E. Howard, Peter C. Lebaron, Sten A. Wallin
  • Patent number: 8685883
    Abstract: The present invention provides porous body precursors and shaped porous bodies. Also included are catalysts and other end-use products based upon the shaped porous bodies and thus the porous body precursors. Finally, processes for making these are provided. The porous body precursors comprise a precursor alumina blend capable of enhancing one or more properties of a shaped porous body based thereupon. The need to employ modifiers to achieve a similar result may thus be substantially reduced, or even avoided, and cost savings are thus provided, as well as savings in time and equipment costs.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: April 1, 2014
    Assignee: Dow Technology Investments LLC
    Inventors: Todd R. Bryden, Kevin E. Howard, Peter C. LeBaron, Sten A. Wallin
  • Patent number: 8513154
    Abstract: The present invention provides porous body precursors and shaped porous bodies. Also included are catalysts and other end-use products based upon the shaped porous bodies and thus the porous body precursors. Finally, processes for making these are provided. The porous body precursors, comprise one or more topography-enhancing additives, i.e., additives that are capable of at least marginally enhancing one or more of surface area, aspect ratio, pore volume, median pore diameter, surface morphology, etc. Downstream products need not necessarily comprise the topography-enhancing additives in order to exhibit the benefits of their inclusion in the porous body precursors.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: August 20, 2013
    Assignee: Dow Technology Investments, LLC
    Inventors: Timothy L. Allen, Todd R. Bryden, Kevin E. Howard, Steven R. Lakso, Peter C. Lebaron, Jamie L. Lovelace, Juliana G. Serafin, Sten A. Wallin
  • Publication number: 20130059169
    Abstract: The present invention is directed to a microbial fuel cell comprising: A) an anode containing one or more conductive materials which is arranged to provide flow paths for electrons through the conductive material and to form flow paths for fluid material through passages formed in the conductive material, B) electrogenic microbes in electrical contact with the anode. C) biodegradable material disposed in a fluid, D) a cathode containing one or more conductive materials adapted such that the cathode can be contacted with an oxygen containing gas, E) an anion exchange membrane disposed between the anode and the cathode; and, F) a conduit for electrons which forms a circuit in contact with both the anode and the cathode.
    Type: Application
    Filed: March 18, 2011
    Publication date: March 7, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Sten A. Wallin, Scott T. Matteucci
  • Publication number: 20130011697
    Abstract: A microbial fuel cell comprising an anode, a cathode, microbes in contact with the anode, a conduit for electrons connecting the anode to the cathode through an external circuit wherein the anode, cathode or both comprise a mixture of one or more conductive materials and one or more ion exchange materials.
    Type: Application
    Filed: March 18, 2011
    Publication date: January 10, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Sten A. Wallin, Scott T. Matteucci, Xiaoying Guo
  • Publication number: 20130011696
    Abstract: A process comprising A) providing a microbial fuel cell comprising art anode, a cathode, microbes in contact with the anode, a conduit for electrons connecting the anode to the cathode, wherein the conduit is contained within the microbial fuel cell or current is introduced to the microbial fuel cell through the conduit; B) contacting the fluid containing biodegradable material with the anode in the presence of microbes; C) contacting the cathode with an oxygen containing gas; D) removing the fluid from the location of the anode. In one preferred embodiment the conduit for electrons is connected to a source of current, in another embodiment the fuel cell, is operated under conditions such that the voltage of the current applied to the fuel cell is from greater than 0 and about 0.2 volts. Preferably the microbial fuel cell produces from greater than 0 kWh/fcg chemical oxygen demand to about 5 kWh/kg chemical oxygen demand.
    Type: Application
    Filed: March 18, 2011
    Publication date: January 10, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Sten A. Wallin, James Miners, Guo Xiaoying
  • Publication number: 20120321966
    Abstract: The present invention relates to a process comprising A) providing a microbial fuel cell comprising i) an anode containing one or more electrically conductive materials which is arranged to provide flow paths for electrons through the electrically conductive material, ii) microbes in electrical contact with the anode iii) a cathode containing one or more electrically conductive materials iv) a catholyte, v) a conduit for electrons in contact with both the anode and the cathode which is a part of a circuit; B) introducing a mixture of one or more electrolytes or one or more electrolytes dissolved in a first fluid with a second fluid containing biodegradable material; C) contacting the mixture of B) with the anode in the presence of microbes; D) contacting the cathode with a catholyte; E) removing from the microbial fuel cell the fluid mixture.
    Type: Application
    Filed: March 18, 2011
    Publication date: December 20, 2012
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Sten A. Wallin, Scott T. Matteucci
  • Publication number: 20110136659
    Abstract: The present invention provides porous body precursors and shaped porous bodies. Also included are catalysts and other end-use products based upon the shaped porous bodies and thus the porous body precursors. Finally, processes for making these are provided. The porous body precursors, comprise one or more topography-enhancing additives, i.e., additives that are capable of at least marginally enhancing one or more of surface area, aspect ratio, pore volume, median pore diameter, surface morphology, etc. Downstream products need not necessarily comprise the topography-enhancing additives in order to exhibit the benefits of their inclusion in the porous body precursors.
    Type: Application
    Filed: April 29, 2009
    Publication date: June 9, 2011
    Inventors: Timothy L. Allen, Todd R. Bryden, Kevin E. Howard, Steven R. Lakso, Peter C. Lebaron, Jamie L. Lovelace, Juliana G Serafin, Sten Wallin
  • Patent number: 7947620
    Abstract: A method of forming a porous mullite composition of acicular mullite grains having improved properties is described, where the mullite is formed at some time in the presence of a fluorine containing gas. For example, it has been discovered that improved properties may result from heating the mullite to a high temperature in an atmosphere selected from the group consisting of water vapor, oxygen, an inert gas or mixtures thereof or forming the mullite composition from precursors having an Al/Si ratio of at most 2.95.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: May 24, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Chandan Saha, Aleksander Jozef Pyzik, Sten Wallin, Arthur M. Prunier, Clifford S. Todd
  • Publication number: 20110059844
    Abstract: The present invention provides porous body precursors and shaped porous bodies. Also included are catalysts and other end-use products based upon the shaped porous bodies and thus the porous body precursors. Finally, processes for making these are provided. The porous body precursors comprise a precursor alumina blend capable of enhancing one or more properties of a shaped porous body based thereupon. The need to employ modifiers to achieve a similar result may thus be substantially reduced, or even avoided, and cost savings are thus provided, as well as savings in time and equipment costs.
    Type: Application
    Filed: April 29, 2009
    Publication date: March 10, 2011
    Inventors: Todd R. Bryden, Kevin E. Howard, Peter C. Labaron, Sten A. Wallin
  • Publication number: 20100056816
    Abstract: This invention relates to shaped porous bodies of alpha-alumina platelets which are useful as catalyst carriers, filters, membrane reactors, and preformed bodies for composites. This invention also relates to processes of making such shaped bodies and processes for modifying the surface composition of alpha-alumina.
    Type: Application
    Filed: July 20, 2007
    Publication date: March 4, 2010
    Inventors: Sten A. Wallin, Juliana G. Serafin, Madan M. Bhasin, Steven R. Lakso
  • Patent number: 7528087
    Abstract: A porous mullite composition is made by Forming a mixture of one or more precursor compounds having the elements present in mullite (e.g., clay, alumina, silica) and a property enhancing compound. The property enhancing compound is a compound having an element selected from the group consisting of Mg, Ca, Fe, Na, K, Ce, Pr, Nd, Sm, Eu, Gd, Th, Dy, Ho, Er, Tm, Yb, Lu, B, Y, Sc, La and combination thereof. The mixture is shaped and to form a porous green shape which is heated under an atmosphere having a fluorine containing gas to a temperature sufficient to form a mullite composition comprised substantially of acicular mullite grains that are essentially chemically bound.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: May 5, 2009
    Assignee: Dow Global Technologies, Inc.
    Inventors: Chandan Saha, Sharon Allen, Chan Han, Robert T. Nilsson, Arthur R. Prunier, Jr., Aleksander J. Pyzik, Sten A. Wallin, Robin Ziebarth, Timothy J. Gallagher