Patents by Inventor Stepan Moskovchenko

Stepan Moskovchenko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11936982
    Abstract: An image capture device includes a mechanical stabilization system is used in image signal processing. The mechanical image stabilization system has an operating bandwidth and includes a motor to control an orientation of an image sensor. A processing apparatus of the image capture device determines a temperature of the motor and adjusts a cutoff frequency of the operating bandwidth based on the temperature of the motor.
    Type: Grant
    Filed: May 4, 2023
    Date of Patent: March 19, 2024
    Assignee: GoPro, Inc.
    Inventors: Joseph A. Enke, Stepan Moskovchenko, Benjamin P. Tankersley, Adam Fenn, Nenad Uzunovic
  • Patent number: 11933891
    Abstract: Target value detection for an unmanned aerial vehicle is described. The unmanned aerial vehicle includes a first transducer that transmits a first ultrasonic signal and receives a first ultrasonic response and a second transducer that transmits a second ultrasonic signal and receives a second ultrasonic response. The second transducer has a wider beam pattern than the first transducer. Determinations are made as to whether either or both of the first or second ultrasonic responses includes a target value within range areas associated with the respective beam patterns of the first and second transducers. A confidence value is generated based on the determinations. The target value is reflected from an object and the confidence value indicates a likelihood of a position of the unmanned aerial vehicle with respect to the object.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: March 19, 2024
    Assignee: GoPro, Inc.
    Inventors: Stepan Moskovchenko, Joseph Anthony Enke
  • Patent number: 11917234
    Abstract: The disclosed technology relates to an electronic device including a display device and an image sensor. The device may include a processor configured to cause the display device to output an illumination image in response to a command to capture one or more digital images of a scene. The processor can also be configured to cause the image sensor to receive the one or more digital images of the scene while the illumination image is displayed.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: February 27, 2024
    Assignee: QUALCOMM Incorporated
    Inventor: Stepan Moskovchenko
  • Publication number: 20230308761
    Abstract: An image capture device includes a mechanical stabilization system is used in image signal processing. The mechanical image stabilization system has an operating bandwidth and includes a motor to control an orientation of an image sensor. A processing apparatus of the image capture device determines a temperature of the motor and adjusts a cutoff frequency of the operating bandwidth based on the temperature of the motor.
    Type: Application
    Filed: May 4, 2023
    Publication date: September 28, 2023
    Inventors: Joseph A. Enke, Stepan Moskovchenko, Benjamin P. Tankersley, Adam Fenn, Nenad Uzunovic
  • Patent number: 11678054
    Abstract: Systems and methods are disclosed for image signal processing. For example, method may include determining a sequence of orientation estimates based on sensor data from one or more motion sensors. The method may include receiving an image from the image sensor. The method may include filtering the sensor data with a pass band matching an operation bandwidth to the sequence of orientation estimates to obtain filtered data. The method may include invoking an electronic image stabilization module to correct the image based on the filtered data to obtain a stabilized image. The method may include storing, displaying, or transmitting an output image based on the stabilized image.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: June 13, 2023
    Assignee: GoPro, Inc.
    Inventors: Joseph A. Enke, Stepan Moskovchenko, Benjamin P. Tankersley, Adam Fenn, Nenad Uzunovic
  • Publication number: 20230059888
    Abstract: Systems and methods are disclosed for image signal processing. For example, methods may include, based on a sequence of orientation estimates for an image sensor and an orientation setpoint, invoking a mechanical stabilization system to adjust an orientation of the image sensor toward the orientation setpoint; receiving an image from the image sensor; determining an orientation error between the orientation of the image sensor and the orientation setpoint during capture of the image; and, based on the orientation error, invoking an electronic image stabilization module to correct the image for a rotation corresponding to the orientation error to obtain a stabilized image.
    Type: Application
    Filed: November 7, 2022
    Publication date: February 23, 2023
    Inventors: Sammy Omari, Pascal Gohl, Joseph A. Enke, Stepan Moskovchenko, Benjamin P. Tankersley
  • Patent number: 11496684
    Abstract: Systems and methods are disclosed for image signal processing. For example, methods may include determining an orientation setpoint for an image sensor; based on a sequence of orientation estimates for the image sensor and the orientation setpoint, invoking a mechanical stabilization system to adjust an orientation of the image sensor toward the orientation setpoint; receiving an image from the image sensor; determining an orientation error between the orientation of the image sensor and the orientation setpoint during capture of the image; based on the orientation error, invoking an electronic image stabilization module to correct the image for a rotation corresponding to the orientation error to obtain a stabilized image; and storing, displaying, or transmitting an output image based on the stabilized image.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: November 8, 2022
    Assignee: GoPro, Inc.
    Inventors: Sammy Omari, Pascal Gohl, Joseph A. Enke, Stepan Moskovchenko, Benjamin P. Tankersley
  • Publication number: 20220315240
    Abstract: Described herein are systems and methods using a security key for an unmanned aerial vehicle. For example, some methods include during flight of an unmanned aerial vehicle, encrypting, using a public key stored by the unmanned aerial vehicle, a symmetric key that is used to encrypt media data captured using one or more sensors of the unmanned aerial vehicle to obtain encrypted media data; landing the unmanned aerial vehicle; connecting a key device to the unmanned aerial vehicle via a serial port connector of the key device and a serial port connector of the unmanned aerial vehicle; while the key device is connected to the unmanned aerial vehicle, decrypting, using a private key stored on the key device, the encrypted symmetric key, which in turn is used to decrypt a portion of the encrypted media data to obtain decrypted media data; and transmitting a portion of the decrypted media data.
    Type: Application
    Filed: December 1, 2021
    Publication date: October 6, 2022
    Inventors: Brian Kubisiak, Joseph Anthony Enke, Ryan Hornung, Stepan Moskovchenko
  • Publication number: 20220078322
    Abstract: Systems and methods are disclosed for image signal processing. For example, method may include determining a sequence of orientation estimates based on sensor data from one or more motion sensors. The method may include receiving an image from the image sensor. The method may include filtering the sensor data with a pass band matching an operation bandwidth to the sequence of orientation estimates to obtain filtered data. The method may include invoking an electronic image stabilization module to correct the image based on the filtered data to obtain a stabilized image. The method may include storing, displaying, or transmitting an output image based on the stabilized image.
    Type: Application
    Filed: November 15, 2021
    Publication date: March 10, 2022
    Inventors: Joseph A. Enke, Stepan Moskovchenko, Benjamin P. Tankersley, Adam Fenn, Nenad Uzunovic
  • Patent number: 11178329
    Abstract: Systems and methods are disclosed for image signal processing. For example, methods may include determining a sequence of orientation estimates based on sensor data from one or more motion sensors; based on the sequence of orientation estimates, invoking a mechanical stabilization system to reject motions of an image sensor occurring within a first operating bandwidth with an upper cutoff frequency; receiving an image from the image sensor; based on the sequence of orientation estimates, invoking an electronic image stabilization module to correct the image for rotations of the image sensor occurring within a second operating bandwidth with a lower cutoff frequency to obtain a stabilized image, wherein the lower cutoff frequency is greater than the upper cutoff frequency; and storing, displaying, or transmitting an output image based on the stabilized image.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: November 16, 2021
    Assignee: GoPro, Inc.
    Inventors: Joseph A. Enke, Stepan Moskovchenko, Benjamin P. Tankersley, Adam Fenn, Nenad Uzunovic
  • Publication number: 20210329152
    Abstract: The disclosed technology relates to an electronic device including a display device and an image sensor. The device may include a processor configured to cause the display device to output an illumination image in response to a command to capture one or more digital images of a scene. The processor can also be configured to cause the image sensor to receive the one or more digital images of the scene while the illumination image is displayed.
    Type: Application
    Filed: July 1, 2021
    Publication date: October 21, 2021
    Inventor: Stepan MOSKOVCHENKO
  • Publication number: 20210273815
    Abstract: Described herein are systems for the production, communication, routing, service, authentication, and consumption of cryptographically authenticable contextual content produced by cryptographically authenticable devices; example implementations of the architecture for a Trusted Contextual Content Device which produces Trusted Contextual Content; and example implementations of the architecture for a Trusted Drone Device which produces Trusted Contextual Content. For example, some of the methods used may include accessing a first set of sensor data from one or more sensors; receiving, a first trusted contextual content that includes a first digital signature; generating a data structure including the first trusted contextual content and data based on the first set of sensor data; signing the data structure using a signing key to generate a second trusted contextual content including a second digital signature; and storing or transmitting the second trusted contextual content.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Inventors: Joseph Anthony Enke, Stepan Moskovchenko
  • Publication number: 20210168272
    Abstract: Systems and methods are disclosed for image signal processing. For example, methods may include determining a sequence of orientation estimates based on sensor data from one or more motion sensors; based on the sequence of orientation estimates, invoking a mechanical stabilization system to reject motions of an image sensor occurring within a first operating bandwidth with an upper cutoff frequency; receiving an image from the image sensor; based on the sequence of orientation estimates, invoking an electronic image stabilization module to correct the image for rotations of the image sensor occurring within a second operating bandwidth with a lower cutoff frequency to obtain a stabilized image, wherein the lower cutoff frequency is greater than the upper cutoff frequency; and storing, displaying, or transmitting an output image based on the stabilized image.
    Type: Application
    Filed: February 12, 2021
    Publication date: June 3, 2021
    Inventors: Joseph A. Enke, Stepan Moskovchenko, Benjamin P. Tankersley, Adam Fenn, Nenad Uzunovic
  • Patent number: 11025429
    Abstract: Described herein are systems for the production, communication, routing, service, authentication, and consumption of cryptographically authenticable contextual content produced by cryptographically authenticable devices; example implementations of the architecture for a Trusted Contextual Content Device which produces Trusted Contextual Content; and example implementations of the architecture for a Trusted Drone Device which produces Trusted Contextual Content. For example, some of the methods used may include accessing a first set of sensor data from one or more sensors; receiving, a first trusted contextual content that includes a first digital signature; generating a data structure including the first trusted contextual content and data based on the first set of sensor data; signing the data structure using a signing key to generate a second trusted contextual content including a second digital signature; and storing or transmitting the second trusted contextual content.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: June 1, 2021
    Assignee: Skydio, Inc.
    Inventors: Joseph Anthony Enke, Stepan Moskovchenko
  • Publication number: 20210149046
    Abstract: Ultrasonic ranging state management for a UAV is described. A transducer transmits an ultrasonic signal and receives an ultrasonic response thereto using a gain value. A noise floor estimation mechanism determines a noise floor estimate. A state mechanism sets an ultrasonic ranging state used by the transducer to a first ultrasonic ranging state. The transducer transmits an ultrasonic signal and responsively receive an ultrasonic response to the ultrasonic signal using a gain value according to the noise floor estimate. The state mechanism processes the ultrasonic response to determine whether to determine a new noise floor estimate, adjust the gain value used by the transducer, or change the ultrasonic ranging state of the UAV to a second ultrasonic ranging state. The configurations of the first and second ultrasonic ranging states differ as to, for example, power and gain levels used by the transducer to receive ultrasonic responses.
    Type: Application
    Filed: November 12, 2020
    Publication date: May 20, 2021
    Inventors: Stepan Moskovchenko, Joseph Anthony Enke
  • Patent number: 10924674
    Abstract: Systems and methods are disclosed for image signal processing. For example, methods may include determining a sequence of orientation estimates based on sensor data from one or more motion sensors; based on the sequence of orientation estimates, invoking a mechanical stabilization system to reject motions of an image sensor occurring within a first operating bandwidth with an upper cutoff frequency; receiving an image from the image sensor; based on the sequence of orientation estimates, invoking an electronic image stabilization module to correct the image for rotations of the image sensor occurring within a second operating bandwidth with a lower cutoff frequency to obtain a stabilized image, wherein the lower cutoff frequency is greater than the upper cutoff frequency; and storing, displaying, or transmitting an output image based on the stabilized image.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: February 16, 2021
    Assignee: GoPro, Inc.
    Inventors: Joseph A. Enke, Stepan Moskovchenko, Benjamin P. Tankersley, Adam Fenn, Nenad Uzunovic
  • Patent number: 10852427
    Abstract: Ultrasonic ranging state management for a UAV is described. A transducer transmits an ultrasonic signal and receives an ultrasonic response thereto using a gain value. A noise floor estimation mechanism determines a noise floor estimate. A state mechanism sets an ultrasonic ranging state used by the transducer to a first ultrasonic ranging state. The transducer transmits an ultrasonic signal and responsively receive an ultrasonic response to the ultrasonic signal using a gain value according to the noise floor estimate. The state mechanism processes the ultrasonic response to determine whether to determine a new noise floor estimate, adjust the gain value used by the transducer, or change the ultrasonic ranging state of the UAV to a second ultrasonic ranging state. The configurations of the first and second ultrasonic ranging states differ as to, for example, power and gain levels used by the transducer to receive ultrasonic responses.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: December 1, 2020
    Assignee: GoPro, Inc.
    Inventors: Stepan Moskovchenko, Joseph Anthony Enke
  • Publication number: 20200174117
    Abstract: Target value detection for an unmanned aerial vehicle is described. The unmanned aerial vehicle includes a first transducer that transmits a first ultrasonic signal and receives a first ultrasonic response and a second transducer that transmits a second ultrasonic signal and receives a second ultrasonic response. The second transducer has a wider beam pattern than the first transducer. Determinations are made as to whether either or both of the first or second ultrasonic responses includes a target value within range areas associated with the respective beam patterns of the first and second transducers. A confidence value is generated based on the determinations. The target value is reflected from an object and the confidence value indicates a likelihood of a position of the unmanned aerial vehicle with respect to the object.
    Type: Application
    Filed: February 7, 2020
    Publication date: June 4, 2020
    Inventors: Stepan Moskovchenko, Joseph Anthony Enke
  • Publication number: 20200169654
    Abstract: Systems and methods are disclosed for image signal processing. For example, methods may include determining a sequence of orientation estimates based on sensor data from one or more motion sensors; based on the sequence of orientation estimates, invoking a mechanical stabilization system to reject motions of an image sensor occurring within a first operating bandwidth with an upper cutoff frequency; receiving an image from the image sensor; based on the sequence of orientation estimates, invoking an electronic image stabilization module to correct the image for rotations of the image sensor occurring within a second operating bandwidth with a lower cutoff frequency to obtain a stabilized image, wherein the lower cutoff frequency is greater than the upper cutoff frequency; and storing, displaying, or transmitting an output image based on the stabilized image.
    Type: Application
    Filed: November 26, 2019
    Publication date: May 28, 2020
    Inventors: Joseph A. Enke, Stepan Moskovchenko, Benjamin P. Tankersley, Adam Fenn, Nenad Uzunovic
  • Patent number: 10557936
    Abstract: Target value detection for an unmanned aerial vehicle is described. The unmanned aerial vehicle includes a first transducer that transmits a first ultrasonic signal and receives a first ultrasonic response and a second transducer that transmits a second ultrasonic signal and receives a second ultrasonic response. The second transducer has a wider beam pattern than the first transducer. Determinations are made as to whether either or both of the first or second ultrasonic responses includes a target value within range areas associated with the respective beam patterns of the first and second transducers. A confidence value is generated based on the determinations. The target value is reflected from an object and the confidence value indicates a likelihood of a position of the unmanned aerial vehicle with respect to the object.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: February 11, 2020
    Assignee: GoPro, Inc.
    Inventors: Stepan Moskovchenko, Joseph Anthony Enke