Patents by Inventor Stephan Biber

Stephan Biber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240133984
    Abstract: The disclosure describes techniques for invalidating a local coil for a magnetic resonance tomography (MRT) system. The techniques include carrying out a measurement with the local coil on the MRT system, changing a mechanical and/or an electrical property of the local coil and/or an item of information about the local coil in the MRT system to the extent that a number of measurements possible with this local coil is reduced and, in the case where only the measurement carried out was possible with the local coil, a further measurement is no longer possible with this local coil on the MRT system. The disclosure also relates to a local coil and to an MRT system.
    Type: Application
    Filed: October 18, 2023
    Publication date: April 25, 2024
    Applicant: Siemens Healthcare GmbH
    Inventor: Stephan Biber
  • Publication number: 20240136737
    Abstract: A method for producing a local coil for an MRT measurement, including shaping a coil structure from an elongate conductor; shaping an antenna for the MRT measurement from the coil structure; introducing the antenna into a cavity mold that is designed to receive a liquid plastic material, wherein the antenna is arranged in the cavity mold in such a way that it is at least partially encapsulatable by liquid plastic material; shaping a local coil by filling the cavity mold with a liquid plastic material and curing the plastic material.
    Type: Application
    Filed: October 18, 2023
    Publication date: April 25, 2024
    Applicant: Siemens Healthcare GmbH
    Inventor: Stephan Biber
  • Patent number: 11940513
    Abstract: A magnetic resonance tomography unit and a method for operating the magnetic resonance tomography unit are provided. The magnetic resonance tomography unit has a transmission interference suppression device with a transmission interference suppression control system, a sensor, and a transmission interference suppression antenna. The transmission interference suppression device is configured to acquire, with the sensor, an excitation signal of the transmitter, and determine, with the transmission interference suppression control system, a transmission interference suppression signal dependent upon the acquired excitation signal of the transmitter. The transmission interference suppression device is configured to transmit, via the transmission interference suppression antenna, the transmission interference suppression signal, so that at a predetermined location outside the magnetic resonance tomography unit, the excitation signal emitted by the transmitter via the transmitter antenna is attenuated.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: March 26, 2024
    Assignee: Siemens Healthineers AG
    Inventors: Stephan Biber, Jürgen Nistler, Markus Vester
  • Publication number: 20240094318
    Abstract: The disclosure relates to a dental coil comprising a transmitter unit including an antenna, a receiver unit with an array of antennas, and a carrier element to be positioned in use on the jaw region of the patient and to follow at least part of the outer shape of the jaw region of the patient, wherein the carrier element is moreover designed to hold the array of antennas of the receiver unit in a predetermined relative position with respect to the jaw region of the patient, such that the array of antennas of the receiver unit borders the outer shape of the jaw region in the predetermined relative position. The disclosure further relates to a magnetic resonance system having a magnetic resonance apparatus and a dental coil, wherein the magnetic resonance apparatus is designed to detect magnetic resonance signals from a jaw region of the patient via the dental coil.
    Type: Application
    Filed: November 5, 2021
    Publication date: March 21, 2024
    Applicant: SIEMENS HEALTHCARE GMBH
    Inventor: Stephan Biber
  • Patent number: 11899084
    Abstract: A magnetic resonance imaging device may include a field generator for generating at least one magnetic gradient field. The field generator may include a first magnet and a second magnet confining an imaging volume of the magnetic resonance imaging device in two spatial directions. The first magnet and the second magnet may be arranged asymmetrically with respect to the imaging volume. The magnetic resonance imaging device may be used to perform a method for acquiring an image of a diagnostically relevant body region of a patient.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: February 13, 2024
    Assignee: Siemens Healthcare GmbH
    Inventors: Michael Mallett, Adrian Mark Thomas, Matthias Gebhardt, Stephan Biber, Andreas Krug, Stefan Popescu, Lars Lauer, Andreas Greiser
  • Publication number: 20240004008
    Abstract: A magnetic resonance imaging device including a main magnet, a gradient system with at least one gradient coil, a cryocooler, a thermal bus structure, and an electromagnetic shield arranged between the gradient system and the main magnet. The electromagnetic shield includes spaced shield elements. The electromagnetic shield is configured to provide an electromagnetic shielding of the main magnet from a magnetic field generated by the at least one gradient coil. The thermal bus structure includes thermal bus elements configured to provide a thermal connection between the plurality of spaced shield elements and a cold head of the cryocooler. At least two thermal bus elements of thermal bus elements include different heat transfer properties to provide individualized temperature control of the spaced shield elements.
    Type: Application
    Filed: June 29, 2023
    Publication date: January 4, 2024
    Applicant: Siemens Healthcare Limited
    Inventors: Stephan Biber, Nicholas Aley
  • Patent number: 11852703
    Abstract: A magnetic resonance imaging device having a field generation unit configured to provide a magnetic field in an imaging volume of the magnetic resonance imaging device. The field generation unit has at least one magnet. A surface of the field generation unit directed towards the imaging volume of the at least one magnet has a concave shape, wherein a direction of access to the imaging volume is oriented essentially perpendicular to a main direction of magnetic field lines in the imaging volume.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: December 26, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Michael Mallett, Adrian Mark Thomas, Stefan Popescu, Andreas Krug, Matthias Gebhardt, Stephan Biber, Andreas Greiser
  • Patent number: 11841406
    Abstract: A magnetic resonance tomograph and a method for operating a magnetic resonance tomograph. In a transmitting state of the magnetic resonance tomograph nuclear spins are excited in an object under examination with an excitation pulse by a high-frequency unit of the magnetic resonance tomograph via a transmitting antenna. The magnetic resonance tomograph is switched over from the transmitting state to a receiving state in a period of less than 40 microseconds. In a further step, in the receiving state, a magnetic resonance signal is received with a receiving antenna.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: December 12, 2023
    Assignee: Siemens Healthcare GmbH
    Inventor: Stephan Biber
  • Patent number: 11828821
    Abstract: In accordance with a method for operating an MRT system a first MR recording is performed so as to map an object to generate first MR data that represents the object. The first MR recording is performed in accordance with a first k-space scanning scheme and during the first MR recording at least one first excitation pulse is transmitted. A second MR recording that is different from the first MR recording is performed to generate second MR data and a noise component is determined in dependence upon the second MR data by a computing unit and the noise component represents an influence of at least one external noise source. An MR image is generated by the computing unit in dependence upon the first MR data and in dependence upon the noise component.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: November 28, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Rainer Schneider, Stephan Biber, David Grodzki, Stephan Kannengießer
  • Patent number: 11774533
    Abstract: An imaging apparatus has an MRT system with an MR receiving antenna configured to receive a first receive signal containing an MR signal from an object to be examined during an examination period. The imaging apparatus includes a modality for examining the object and/or for acting on the object via mechanical or electromagnetic waves, wherein the modality has an electronic circuit. The imaging apparatus includes an auxiliary antenna arranged and configured to receive a second receive signal containing an interference signal generated by the electronic circuit during the examination period. The imaging apparatus has a processing system configured to suppress interference in the first receive signal based on the first and the second receive signal.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: October 3, 2023
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Philipp Hoecht, Juergen Nistler, Ludwig Eberler, Stephan Kannengiesser, Dieter Ritter, Stephan Biber, Rainer Schneider, Jan Bollenbeck
  • Patent number: 11774528
    Abstract: A magnetic resonance tomography scanner and a method for testing the magnetic resonance tomography scanner are provided. The magnetic resonance tomography scanner has a transmitter that is configured to transmit two-tone signals at different levels and to acquire intermodulation products of the two-tone signal with the receiver. A status of a receive path is inferred via a behavior of odd-order intermodulation products.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: October 3, 2023
    Assignee: Siemens Healthcare GmbH
    Inventor: Stephan Biber
  • Publication number: 20230280425
    Abstract: A magnetic resonance tomography system with a sensor for detecting spikes and with a gradient coil. Nuclear spins of an object under observation are excited by a magnetic alternating field of the magnetic resonance tomography system. A gradient field is generated by the magnetic resonance tomography system using the gradient coil. A magnetic resonance signal is acquired using a receiving antenna of the magnetic resonance tomography system and an interference signal using the sensor. From the magnetic resonance signal an image is reconstructed as a function of the acquired interference signal of the sensor.
    Type: Application
    Filed: February 16, 2023
    Publication date: September 7, 2023
    Inventors: Rainer Schneider, Jürgen Nistler, Razvan Lazar, Stephan Biber
  • Publication number: 20230251339
    Abstract: Systems and methods for ascertaining an item of movement information concerning movement of an object under examination during a magnetic resonance scan. A pilot tone signal generator of a magnetic resonance apparatus transmits a pilot tone signal. At least one first coil element of the magnetic resonance apparatus receives the pilot tone signal. The pilot tone signal received by the at least one first coil element is in each case a first pilot tone received signal. At least one second coil element of the magnetic resonance apparatus receives the pilot tone signal. The pilot tone signal received by the at least one second coil element is in each case a second pilot tone received signal. The at least one first pilot tone received signal is corrected with the aid of the at least one second pilot tone received signal. The item of movement information for the object under examination is ascertained using the corrected at least one first pilot tone received signal.
    Type: Application
    Filed: February 7, 2023
    Publication date: August 10, 2023
    Inventor: Stephan Biber
  • Patent number: 11714150
    Abstract: A gradient coil unit including a first conductor structure arranged within a first form and a second conductor structure arranged within a second form, wherein the first conductor structure and the second conductor structure are designed together to generate a magnetic field gradient in a first direction, the first form and the second form are arranged separately, opposite each other, and divided by a hollow space, and the first form has a segment of a circle as a cross section.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: August 1, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Stephan Biber, Andreas Krug
  • Publication number: 20230221389
    Abstract: A method for performing a magnetic resonance measurement includes selecting a first set of coil elements from a plurality of coil elements and a second set of coil elements from the plurality of coil elements, and performing a magnetic resonance measurement. During the magnetic resonance measurement with the first set of coil elements and the second set of coil elements, magnetic resonance signals and pilot tone signals are received. The method includes ascertaining at least one magnetic resonance image solely with the assistance of magnetic resonance signals received with the first set of coil elements during performance of the magnetic resonance measurement, and ascertaining patient movement information solely with the assistance of pilot tone signals received with the second set of coil elements during performance of the magnetic resonance measurement. The first set of coil elements is not congruent with the second set of coil elements.
    Type: Application
    Filed: January 12, 2023
    Publication date: July 13, 2023
    Inventors: Stephan Biber, Peter Speier
  • Patent number: 11698425
    Abstract: A magnetic resonance device having a main magnet unit with a cylindrical patient aperture. A gradient connection plate for a gradient coil arrangement surrounds the patient aperture. A cladding arrangement with at least one cladding part outwardly delimits the main magnet unit.
    Type: Grant
    Filed: March 11, 2022
    Date of Patent: July 11, 2023
    Assignee: Siemens Healthcare GmbH
    Inventor: Stephan Biber
  • Patent number: 11698424
    Abstract: An MRI scanner and a method for operation of the MRI scanner are provided. The MRI scanner has a first receiving antenna for receiving a magnetic resonance signal from a patient in a patient tunnel, a second receiving antenna for receiving a signal having the Larmor frequency of the magnetic resonance signal, and a receiver. The second receiving antenna is located outside of the patient tunnel or near an opening thereof. The receiver has a signal connection to the first receiving antenna and the second receiving antenna and is configured to suppress an interference signal by the second receiving antenna in the magnetic resonance signal received by the first receiving antenna.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: July 11, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Stephan Biber, Ian Edward Nichols, David James Sadler, David Grodzki, Markus Vester
  • Patent number: 11693075
    Abstract: A magnetic resonance tomography unit includes a transmitter, a transmission monitoring device for monitoring an excitation signal from the transmitter, and a plurality of transmit antennas. The magnetic resonance tomography unit also includes a switching device configured to bring the transmission monitoring device selectively into a signal connection to one transmit antenna of the plurality of transmit antennas. A method for operating the magnetic resonance tomography unit is also provided.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: July 4, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Stephan Biber, Thorsten Speckner
  • Patent number: 11672489
    Abstract: The disclosure relates to a method for monitoring a motion of a subject, as well as to a corresponding system and computer program product. As part of the method, a monitoring signal is emitted towards a corresponding receiver. The motion of the subject is then detected based on a change in the received monitoring signal. Therein, the monitoring signal is emitted using a spread-spectrum technique and/or using an M-to-N and multi-antenna emitter-receiver system with a set of M transmitting antennas and a set of N receiving antennas.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: June 13, 2023
    Assignee: Siemens Healthcare GmbH
    Inventor: Stephan Biber
  • Patent number: 11675034
    Abstract: A magnetic resonance imaging system comprises a field generation unit and a supporting structure for providing structural support for the field generation unit, wherein the field generation unit comprises at least one magnet for generating a B0 magnetic field and an opening configured to provide access to an imaging volume positioned in the B0 magnetic field along at least one direction and wherein the at least one direction is angled with respect to a main direction of magnetic field lines of the B0 magnetic field in the imaging volume.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: June 13, 2023
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Michael Mallett, Stefan Popescu, Adrian Mark Thomas, Stephan Biber, Matthias Gebhardt, Thorsten Speckner, Thomas Beck, Andreas Greiser