Patents by Inventor Stephan Buschnakowski

Stephan Buschnakowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11009473
    Abstract: A method for determining a physical and/or chemical, temperature dependent, process variable of process automation technology utilizing a resistance thermometer (RPt1000), wherein the resistance thermometer (RPt1000) is installed in an electrical circuit, comprising the steps of: measuring a first voltage (U1) across at least a first precision resistor (R1); measuring a second voltage (U2) across at least a second precision resistor (R2); measuring a third voltage (U3) across at least a third precision resistor (R3), wherein cyclically or continuously a constant electrical current (I) is sent through the at least first precision resistor (R1), the at least second precision resistor (R2) or the at least third precision resistor (R3); determining temperature coefficients (a, b, c) characteristic for the electrical circuit by means of the first voltage (U1), the second voltage (U2) and the third voltage (U3); sending the constant electrical current (I) through the resistance thermometer (RPt1000) and measuring a
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: May 18, 2021
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Stefan Paul, Stephan Buschnakowski
  • Patent number: 10509055
    Abstract: The present disclosure discloses a conductivity sensor including a basic body of sintered ceramic having at least two cavities disposed on a frontal face and a metal electrodes disposed in each cavity. Each electrode is about one fifth the length of the basic body. Electrical cables extend from a rear face of the basic body into holes in each cavity and contact the electrodes. A solder paste or an electrically conductive adhesive disposed in each hole connects each cable with the respective metal electrode electrically and mechanically.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: December 17, 2019
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Stephan Buschnakowski, Alexander Serfling
  • Patent number: 10511122
    Abstract: The present disclosure relates to a sensor arrangement for use in process automation, having a sensor, comprising a first coupling body, having at least one sensor element for detecting a measurement value of the process automation, and a first interface for transmitting a signal dependent upon the measurement value, a connection element for transmitting the signal to a superordinate unit, comprising a second coupling body complementary to the first coupling body, having a second interface complementary to the first interface, wherein the first and second interfaces are designed for bi-directional communication between sensor and superordinate unit, where the sensor has at least one light source for transducing the signal dependent upon the measurement value into light of a color corresponding to the measurement value.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: December 17, 2019
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Stephan Buschnakowski, Steffi Krönert
  • Publication number: 20180348258
    Abstract: The present disclosure discloses a conductivity sensor including a basic body of sintered ceramic having at least two cavities disposed on a frontal face and a metal electrodes disposed in each cavity. Each electrode is about one fifth the length of the basic body. Electrical cables extend from a rear face of the basic body into holes in each cavity and contact the electrodes. A solder paste or an electrically conductive adhesive disposed in each hole connects each cable with the respective metal electrode electrically and mechanically.
    Type: Application
    Filed: August 13, 2018
    Publication date: December 6, 2018
    Inventors: Stephan Buschnakowski, Alexander Serfling
  • Patent number: 10073118
    Abstract: A method for contacting at least two metal electrodes, wherein the metal electrodes are located in a cavity of a basic body of sintered ceramic and frontal end faces of the metal electrodes. The metal electrodes are arranged essentially planparallel to an outer surface of the basic body. The method includes steps as follows: introducing a solder into at least one hole of the basic body, wherein the hole is so embodied that it leads to a rear portion of the metal electrode away from the frontal end face of the metal electrode wherein the solder can wet the rear portion of the metal electrode, wherein the metal electrodes are in their longitudinal direction shorter than the basic body, especially have only ? of the length of the basic body; introducing a cable into the hole at least until the cable extends into the solder; and heating the basic body with solder and cable above the solidification temperature of the solder.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: September 11, 2018
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Stephan Buschnakowski, Alexander Serfling
  • Publication number: 20180034204
    Abstract: The present disclosure relates to a sensor arrangement for use in process automation, having a sensor, comprising a first coupling body, having at least one sensor element for detecting a measurement value of the process automation, and a first interface for transmitting a signal dependent upon the measurement value, a connection element for transmitting the signal to a superordinate unit, comprising a second coupling body complementary to the first coupling body, having a second interface complementary to the first interface, wherein the first and second interfaces are designed for bi-directional communication between sensor and superordinate unit, where the sensor has at least one light source for transducing the signal dependent upon the measurement value into light of a color corresponding to the measurement value.
    Type: Application
    Filed: July 19, 2017
    Publication date: February 1, 2018
    Inventors: Stephan Buschnakowski, Steffi Krönert
  • Patent number: 9696271
    Abstract: A sensor, especially a conductive conductivity sensor, to determine a measurand, especially the conductivity, of a medium, including: a process interface shaped as a hollow cylinder and made of a metal, with the process interface having at least two internal segments; a mainly cylinder-shaped sensor element that is mainly made of a ceramic, with a first section to introduce the sensor element into the process interface and a second section with which the sensor element protrudes from the process interface. The first section of the sensor element has at least two segments, wherein the respective first segment of the process interface and the sensor element are designed as a press fit, and the respective second segment of the process interface and the sensor element create a gap and a method to manufacture such a sensor.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: July 4, 2017
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Alexander Serfling, Stephan Buschnakowski
  • Publication number: 20160153925
    Abstract: A sensor, especially a conductive conductivity sensor, to determine a measurand, especially the conductivity, of a medium, comprising: a process interface shaped as a hollow cylinder and made of a metal, with the process interface having at least two internal segments; a mainly cylinder-shaped sensor element that is mainly made of a ceramic, with a first section to introduce the sensor element into the process interface and a second section with which the sensor element protrudes from the process interface. The first section of the sensor element has at least two segments, wherein the respective first segment of the process interface and the sensor element are designed as a press fit, and the respective second segment of the process interface and the sensor element create a gap and a method to manufacture such a sensor.
    Type: Application
    Filed: November 24, 2015
    Publication date: June 2, 2016
    Inventors: Alexander Serfling, Stephan Buschnakowski
  • Patent number: 9329226
    Abstract: A method and a sensor for ascertaining at least one malfunction of a conductive conductivity sensor having at least two electrodes applying a first electrical variable to the electrodes measuring at least a second electrical variable on the electrodes and deciding whether a malfunction is present based on measuring the second electrical variable. The second electrical variable is located in a first range when measuring the medium when no malfunction is present, and the second electrical variable is located in a second range in the case of a first malfunction, especially when the conductivity sensor is located at least partially outside of the medium, and the second electrical variable is located in a third range when a second malfunction is present, especially an electrode break or a break in a line to the electrodes.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: May 3, 2016
    Assignee: ENDRESS + HAUSER CONDUCTA GESELLSCHAFT FUR MESS- UND REGELTECHNIK MBH + CO. KG
    Inventors: Stefan Paul, Stephan Buschnakowski, Robert Tzschoppe
  • Publication number: 20150081244
    Abstract: A method for determining a physical and/or chemical, temperature dependent, process variable of process automation technology utilizing a resistance thermometer (RPt1000), wherein the resistance thermometer (RPt1000) is installed in an electrical circuit, comprising the steps of: measuring a first voltage (U1) across at least a first precision resistor (R1); measuring a second voltage (U2) across at least a second precision resistor (R2); measuring a third voltage (U3) across at least a third precision resistor (R3), wherein cyclically or continuously a constant electrical current (I) is sent through the at least first precision resistor (R1), the at least second precision resistor (R2) or the at least third precision resistor (R3); determining temperature coefficients (a, b, c) characteristic for the electrical circuit by means of the first voltage (U1), the second voltage (U2) and the third voltage (U3); sending the constant electrical current (I) through the resistance thermometer (RPt1000) and measuring a
    Type: Application
    Filed: September 9, 2014
    Publication date: March 19, 2015
    Inventors: Stefan Paul, Stephan Buschnakowski
  • Publication number: 20150069999
    Abstract: A method for contacting at least two metal electrodes, wherein the metal electrodes are located in a cavity of a basic body of sintered ceramic and frontal end faces of the metal electrodes. The metal electrodes are arranged essentially planparallel to an outer surface of the basic body. The method includes steps as follows: introducing a solder into at least one hole of the basic body, wherein the hole is so embodied that it leads to a rear portion of the metal electrode away from the frontal end face of the metal electrode wherein the solder can wet the rear portion of the metal electrode, wherein the metal electrodes are in their longitudinal direction shorter than the basic body, especially have only ? of the length of the basic body; introducing a cable into the hole at least until the cable extends into the solder; and heating the basic body with solder and cable above the solidification temperature of the solder.
    Type: Application
    Filed: September 8, 2014
    Publication date: March 12, 2015
    Inventors: Stephan Buschnakowski, Alexander Serfling
  • Patent number: 8928181
    Abstract: In a method and in an apparatus for transmission of energy and data, with a primary side, on which an amplifier is arranged, with a secondary side, on which a data source, e.g. a measuring sensor, is arranged, and with a plug-together assembly inductively coupling, galvanically completely isolated, the primary side and the secondary side, to minimize power losses and disturbing influences of fluctuating parameters, power from the plug-together assembly and from the amplifier, preferably a Class-E-amplifier, is controlled to a predeterminable, desired value. For this, a microcontroller taps the primary voltage on the primary winding and produces for the amplifier a controlled operating voltage as well as a controlled operating frequency, in order to keep the working point of the amplifier always in the optimal region.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: January 6, 2015
    Assignee: Endress + Hauser Conducta Gesellschaft fur Mess- und Regeltechnik mbH + Co. KG
    Inventors: Stephan Buschnakowski, Torsten Pechstein, Sven-Matthias Scheibe
  • Patent number: 8869613
    Abstract: The invention relates to A sensor end module, comprising: a sensor cap having a first connecting element and a sensorially active element for contact with a medium; and a memory module, comprising: a housing having a second connecting element, wherein the second connecting element enters into a shape- and/or force interlocking connection with the first connecting element; a memory element, wherein the memory element contains information concerning the sensorially active element the memory element is arranged in or on the housing; a first communication interface for sending and/or receiving information and/or data, and wherein the first communication interface is in electrical contact with the memory element. Furthermore, the invention relates to a sensor and a measuring system.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: October 28, 2014
    Assignee: Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG
    Inventors: Stephan BUschnakowski, Ronny Michael, Ronny Grosse-Uhlmann
  • Patent number: 8762598
    Abstract: An arrangement with a superordinated control unit and at least one intelligent field device connectable with the control unit, wherein associated with the control unit is at least one interface with a connection element for accommodating a corresponding connection counterpart. The connection counterpart is associable with an interface module, wherein associated with the interface module is a software protection system securing accessing of the field device. The interface module permits communication between the corresponding field device and the superordinated control unit, wherein associated with the superordinated control unit is a software-protected processing program for the field device, and wherein the processing program is started or enabled via the software protection system, when the connection counterpart of the interface module of the field device is connected with the connection element of the control unit.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: June 24, 2014
    Assignee: Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG
    Inventors: Detlev Wittmer, Jörg Giebson, Stephan Buschnakowski, Stefan Pilz
  • Patent number: 8753495
    Abstract: An electrochemical half cell for application in an electrochemical sensor, wherein a fill electrolyte of the half cell is in contact with an external medium via a liquid junction, characterized in that the liquid junction is controllable as regards its permeability and/or its flow.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: June 17, 2014
    Assignee: Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG
    Inventors: Stephan Buschnakowski, Lothar Auerswald, Thomas Wilhelm
  • Publication number: 20140015540
    Abstract: A method and a sensor for ascertaining at least one malfunction of a conductive conductivity sensor having at least two electrodes applying a first electrical variable to the electrodes measuring at least a second electrical variable on the electrodes and deciding whether a malfunction is present based on measuring the second electrical variable. The second electrical variable is located in a first range when measuring the medium when no malfunction is present, and the second electrical variable is located in a second range in the case of a first malfunction, especially when the conductivity sensor is located at least partially outside of the medium, and the second electrical variable is located in a third range when a second malfunction is present, especially an electrode break or a break in a line to the electrodes.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 16, 2014
    Inventors: Stefan Paul, Stephan Buschnakowski, Robert Tzschoppe
  • Patent number: 8396683
    Abstract: A cable circuit for connecting a sensor module to a measurement transmitter. The cable circuit includes a contactless interface for signal transmission between the cable circuit and the sensor module, wherein the sensor module is galvanically isolated from the cable circuit, and wherein signal transmission between the cable circuit and the sensor module occurs on an optical, inductive or capacitive path. Additionally, the cable circuit includes a signal processing unit, as well as a cable interface for connecting a cable, which connects the cable circuit with the measurement transmitter. The signal processing unit is integrated into the signal path.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: March 12, 2013
    Assignee: Endress + Hauser Conducta Gesellschaft für Mess-und Regeltechnik mbH + Co. KG
    Inventors: Stephan Buschnakowski, Torsten Pechstein, Stefan Robl, Sven-Matthias Scheibe, Tobias Mieth
  • Patent number: 8322236
    Abstract: A measuring apparatus having a measurement voltage input with at least one input contact for an input voltage of a measuring element and a method for detecting moisture on the measurement voltage input of such a measuring apparatus are provided, wherein the measuring apparatus includes a supplemental voltage source, which delivers at least one supplemental voltage and is connected with a supplemental contact arranged in the region of the at least one input contact.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: December 4, 2012
    Assignee: Endress + Hauser Conducta Gesellschaft für Mess-und Regeltechnik mbH + Co. KG
    Inventors: Herman Straub, Martin Lohmann, Stephan Buschnakowski, Jorg Uhle
  • Patent number: 8272271
    Abstract: A device for determining or monitoring one or more physical and/or chemical, process variables and having a vibration sensor comprising, a plug-in element and a socket element, which are releasably connected by a pluggable connection and which communicate with one another via an interface, wherein, in the plug-in element or the socket element, a transducer is provided for determining or monitoring a process variable, and wherein the element not having the transducer has the vibration sensor, and the element having the vibration sensor is connectable with a superordinated unit.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: September 25, 2012
    Assignee: Endress + Hauser Conducta Gesellschaft Für Mess-Und Regeltechnik mbH+Co. KG
    Inventors: Stephan Buschnakowski, Jorg Uhle
  • Publication number: 20120168321
    Abstract: The invention relates to an electrochemical half cell for application in an electrochemical sensor, wherein a fill electrolyte (10) of the half cell is in contact with an external medium via a liquid junction (5), characterized in that the liquid junction (5) is controllable as regards its permeability and/or its flow.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 5, 2012
    Applicant: Endress + Hauser Conducta Gesellschaft fur Mess-und Regeltechnik mbH + Co. KG
    Inventors: Stephan Buschnakowski, Lothar Auerswald, Thomas Wilhelm