Patents by Inventor Stephan Eckhoff

Stephan Eckhoff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10989089
    Abstract: The invention relates to a particle filter, which comprises a wall flow filter and SCR-active material, wherein the wall flow filter comprises ducts which extend in parallel between the first and the second end of the wall flow filter and which are alternately closed in a gas-tight manner either at the first or the second end and which are separated by porous walls, the pores of which have inner surfaces, and the SCR-active material is located in the form of a coating on the inner surfaces of the pores of the porous walls, characterized in that the coating has a gradient, such that the side of the coating facing the exhaust gas has a higher selectivity in the SCR reaction than the side of the coating that faces the inner surfaces of the pores. The SCR-active material is preferably a small-pore zeolite, which has a maximum ring size of eight tetrahedral atoms and is exchanged with copper and/or iron.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: April 27, 2021
    Assignee: Umicore AG & Co. KG
    Inventors: Anke Schuler, Katja Adelmann, Franz Dornhaus, Michael Schiffer, Stephan Eckhoff
  • Publication number: 20200406191
    Abstract: The present invention relates to an SCR-active material, comprising a small-pore zeolite, aluminum oxide and copper, characterized in that it contains 5 to 25 wt-% of aluminum oxide in relation to the entire material and that the copper is present on the aluminum oxide in a first concentration and on the small-pore zeolite in a second concentration.
    Type: Application
    Filed: September 8, 2020
    Publication date: December 31, 2020
    Inventors: Michael Seyler, Michael Lennartz, Frank-Walter Schuetze, Benjamin Barth, Anke Schuler, Frank Welsch, Stephan Eckhoff
  • Patent number: 10799831
    Abstract: The present invention relates to an SCR-active material, comprising a small-pore zeolite, aluminum oxide and copper, characterized in that it contains 5 to 25 wt-% of aluminum oxide in relation to the entire material and that the copper is present on the aluminum oxide in a first concentration and on the small-pore zeolite in a second concentration.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: October 13, 2020
    Assignee: Umicore AG & Co. KG
    Inventors: Michael Seyler, Michael Lennartz, Frank-Walter Schuetze, Benjamin Barth, Anke Schuler, Frank Welsch, Stephan Eckhoff
  • Publication number: 20190203625
    Abstract: The invention relates to a particle filter, which comprises a wall flow filter and SCR-active material, wherein the wall flow filter comprises ducts which extend in parallel between the first and the second end of the wall flow filter and which are alternately closed in a gas-tight manner either at the first or the second end and which are separated by porous walls, the pores of which have inner surfaces, and the SCR-active material is located in the form of a coating on the inner surfaces of the pores of the porous walls, characterized in that the coating has a gradient, such that the side of the coating facing the exhaust gas has a higher selectivity in the SCR reaction than the side of the coating that faces the inner surfaces of the pores. The SCR-active material is preferably a small-pore zeolite, which has a maximum ring size of eight tetrahedral atoms and is exchanged with copper and/or iron.
    Type: Application
    Filed: August 11, 2017
    Publication date: July 4, 2019
    Inventors: Anke Schuler, Katja Adelmann, Franz Dornhaus, Michael Schiffer, Stephan Eckhoff
  • Publication number: 20190184338
    Abstract: The present invention relates to an SCR-active material, comprising a small-pore zeolite, aluminum oxide and copper, characterized in that it contains 5 to 25 wt-% of aluminum oxide in relation to the entire material and that the copper is present on the aluminum oxide in a first concentration and on the small-pore zeolite in a second concentration.
    Type: Application
    Filed: August 11, 2017
    Publication date: June 20, 2019
    Inventors: Michael Seyler, Michael Lennartz, Frank-Walter Schuetze, Benjamin Barth, Anke Schuler, Frank Welsch, Stephan Eckhoff
  • Publication number: 20190176087
    Abstract: The invention relates to an SCR-active material, comprising a small-pore zeolite of the structure type levyne (LEV), aluminum oxide, and copper, characterized in that, based on the total material, the material contains 4 to 25 wt % of aluminum oxide.
    Type: Application
    Filed: August 11, 2017
    Publication date: June 13, 2019
    Inventors: Frank Welsch, Michael Seyler, Frank-Walter Schuetze, Stephan Eckhoff
  • Publication number: 20190105650
    Abstract: The invention relates to a catalyst, which comprises a catalyst substrate of the length L and two SCR-catalytically active materials A and B, wherein the SCR-catalytically active material A contains a zeolite of the levyne structure type, which contains ion-exchanged iron and/or copper, and the SCR-catalytically active material B contains a zeolite of the chabazite structure type, which contains ion-exchanged iron and/or copper, wherein (i) the SCR-catalytically active materials A and B are in the form of two material zones A and B, wherein material zone A extends from the first end of the catalyst substrate at least over part of the length L and material zone B extends from the second end of the catalyst substrate at least over part of the length L, or wherein (ii) the catalyst substrate is formed by the SCR-catalytically active material A or B and a matrix component and the SCR-catalytically active material B or A extends at least over part of the length L of the catalyst substrate in the form of a material
    Type: Application
    Filed: April 13, 2017
    Publication date: April 11, 2019
    Applicant: UMICORE AG & CO. KG
    Inventors: Frank WELSCH, Stephan ECKHOFF, Michael SEYLER, Anke SCHULER
  • Publication number: 20190060885
    Abstract: The invention relates to a particle filter, which comprises a wall flow filter and two SCR-catalytically active materials A and B which are different from each other, wherein the SCR-catalytically active material A contains a zeolite of the chabazite structure type, which contains ion-exchanged iron and/or copper, and the SCR-catalytically active material B contains a zeolite of the levyne structure type, which contains ion-exchanged iron and/or copper, wherein (i) the SCR-catalytically active materials A and B are in the form of two material zones A and B, wherein material zone A extends from the first end of the wall flow filter at least over part of the length L and material zone B extends from the second end of the wall flow filter at least over part of the length L, or wherein (ii) the wall flow filter is formed by the SCR-catalytically active material A or B and a matrix component and the SCR-catalytically active material B or A extends at least over part of the length L of the wall flow filter in the f
    Type: Application
    Filed: April 13, 2017
    Publication date: February 28, 2019
    Applicant: UMICORE AG & CO. KG
    Inventors: Frank WELSCH, Stephan ECKHOFF, Michael SEYLER, Anke SCHULER
  • Patent number: 9719446
    Abstract: The present invention relates to the use of different regeneration strategies for nitrogen oxide storage catalysts (NOx storage catalyst, LNT or NSC), depending on the exhaust gas temperatures, to reduce in the total exhaust gas the greenhouse gas N2O (nitrous oxide) that is produced as a secondary emission during the regeneration of the storage catalyst. If the exhaust gas temperature is below 275° C.-290° C., regeneration takes place using a strategy with short pulses of around 2 seconds and ? Lambda 0.95 rich.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: August 1, 2017
    Assignee: UMICORE AG & CO. KG
    Inventors: Frank Adam, Stephan Eckhoff, Sebastian Mueller
  • Patent number: 9587540
    Abstract: The invention relates to a method for reactivating a system composed of an oxidation catalytic converter (5) followed by a possibly catalytically coated particle filter (6), and to a correspondingly adapted exhaust-gas purification system for lean-burn engines (1) with low pressure EGR (14). The present invention relates in particular to the reactivation of such a system during overrun operation of the engine.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: March 7, 2017
    Assignee: UMICORE AG & CO. KG
    Inventors: Stephan Eckhoff, Stefan Franoschek
  • Patent number: 9482128
    Abstract: The invention relates to a method for regenerating nitrogen oxide storage catalytic converters and to a correspondingly adapted exhaust-gas purification system for lean-burn engines. In particular, the present invention relates to the regeneration of nitrogen oxide storage catalytic converters during special driving situations of the vehicle.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: November 1, 2016
    Assignee: UMICORE AG & CO. KG
    Inventors: Stephan Eckhoff, Stefan Franoschek, Frank Adam
  • Publication number: 20160222901
    Abstract: The present invention relates to the use of different regeneration strategies for nitrogen oxide storage catalysts (NOx storage catalyst, LNT or NSC), depending on the exhaust gas temperatures, to reduce in the total exhaust gas the greenhouse gas N2O (nitrous oxide) that is produced as a secondary emission during the regeneration of the storage catalyst. If the exhaust gas temperature is below 275° C.-290° C., regeneration takes place using a strategy with short pulses of around 2 seconds and ? Lambda 0.95 rich.
    Type: Application
    Filed: August 20, 2014
    Publication date: August 4, 2016
    Applicant: UMICORE AG & CO. KG
    Inventors: Frank ADAM, Stephan ECKHOFF, Sebastian MUELLER
  • Patent number: 9328682
    Abstract: The present invention relates to a regulating strategy for a special catalytic converter for exhaust-gas aftertreatment. The catalytic converter concept is distinguished in that at least two nitrogen oxide storage catalytic converters are used in the exhaust section of a vehicle. The first, possibly close-coupled unit is followed by one or more nitrogen oxide storage catalytic converters, which are possibly situated in the underbody of the vehicle. The nitrogen oxide storage catalytic converters are then regenerated as a function of the exceedance of nitrogen oxide threshold vales downstream thereof.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: May 3, 2016
    Assignee: UMICORE AG & CO. KG
    Inventors: Ruediger Hoyer, Stefan Franoschek, Stephan Eckhoff
  • Publication number: 20160082427
    Abstract: The present invention relates to the use of a particular method for the targeted desulfurization of particular nitric oxide storage catalysts (NOx storage catalysts). In particular, this invention is directed to the use of an adapted method on specifically composed storage catalysts.
    Type: Application
    Filed: April 17, 2014
    Publication date: March 24, 2016
    Applicant: UMICORE AG & CO. KG
    Inventors: Frank ADAM, Susanne KUNERT, Stephan ECKHOFF, Christian LAMMARCK
  • Publication number: 20140123630
    Abstract: The invention relates to a method for reactivating a system composed of an oxidation catalytic converter (5) followed by a possibly catalytically coated particle filter (6), and to a correspondingly adapted exhaust-gas purification system for lean-burn engines (1) with low pressure EGR (14). The present invention relates in particular to the reactivation of such a system during over run operation of the engine.
    Type: Application
    Filed: June 22, 2012
    Publication date: May 8, 2014
    Applicant: UMICORE AG & CO. KG
    Inventors: Stephan Eckhoff, Stefan Franoschek
  • Publication number: 20140090362
    Abstract: The invention relates to a method for regenerating nitrogen oxide storage catalytic converters and to a correspondingly adapted exhaust-gas purification system for lean-burn engines. In particular, the present invention relates to the regeneration of nitrogen oxide storage catalytic converters during special driving situations of the vehicle.
    Type: Application
    Filed: May 9, 2012
    Publication date: April 3, 2014
    Applicant: UMICORE AG & CO. KG
    Inventors: Stephan Eckhoff, Stefan Franoschek, Frank Adam
  • Patent number: 8512658
    Abstract: The present invention relates to a method for exhaust gas after-treatment for essentially lean-burn internal combustion engines and also a corresponding advantageous exhaust gas after-treatment system. In particular, the present invention relates to reducing the proportion of the greenhouse gas N20 in the total exhaust gas from a corresponding internal combustion system using at least one NOx storage catalyst as exhaust gas purification element. The objective of the invention is to operate the N20 depletion catalyst located downstream of the NOx storage catalyst under lambda=<1 conditions when the N20 formed by the NOx storage catalyst reaches the N20 depletion catalyst.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: August 20, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Stephan Eckhoff, Frank Adam, Christian Lammarck
  • Patent number: 8475753
    Abstract: The present invention relates to an exhaust-gas aftertreatment system which comprises a preferably catalytically active particle filter (wall-flow filter) which is followed in turn by a throughflow monolith (flow-through monolith) which is preferably provided with a catalytically active function. Both components have the same storage functions for gaseous substances present in the exhaust gas of internal combustion engines. The system is suitable in particular for the simultaneous removal of particles and pollutants from the exhaust gas of both predominantly lean-operated internal combustion engines and also of internal combustion engines operated predominantly with a stoichiometric air/fuel mixture. Likewise described is a process for the production and the use of such a system for exhaust-gas aftertreatment.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: July 2, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Stephan Eckhoff, Wilfried Mueller, Joerg-Michael Richter, Stefan Franoschek, Martin Votsmeier
  • Patent number: 8454917
    Abstract: A nitrogen oxide storage catalyst is provided, which has two catalytically active coatings on a support body. The lower coating applied directly to the support body has a nitrogen oxide storage function and includes platinum as a catalytically active component applied to a homogeneous magnesium-aluminum mixed oxide in combination with a nitrogen oxide storage material, in which a nitrogen oxide storage component is likewise present and applied to a homogeneous magnesium-aluminum mixed oxide. The second layer is notable for three-way catalytic activity, and includes palladium applied to aluminum oxide and barium oxide or strontium oxide, but no platinum.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: June 4, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Ruediger Hoyer, Stephan Eckhoff, Thomas R. Pauly
  • Patent number: 8383544
    Abstract: Nitrogen oxide storage catalysts are used to remove the nitrogen oxides present in the lean exhaust gas of lean-burn engines. As a result of the stress due to high temperatures in vehicle operation, they are subject to thermal aging processes which affect both the nitrogen oxide storage components and the noble metals present as catalytically active components. The present invention provides a process with which the catalytic activity of a nitrogen oxide storage catalyst which comprises, in addition to platinum as a catalytically active component, basic compounds of strontium and/or barium on a support material comprising cerium oxide, said catalytic activity being lost owing to the thermal aging process, can be at least partly restored. The two-stage process is based on the fact that strontium and/or barium compounds formed during the thermal aging with the support material, which also comprise platinum, are recycled to the catalytically active forms by controlled treatment with specific gas mixtures.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: February 26, 2013
    Assignee: Umicore AG & Co., KG
    Inventors: Stephan Eckhoff, Meike Wittrock, Ulrich Goebel, Ina Grisstede, Ruediger Hoyer, Wilfried Mueller, Thomas Kreuzer, Maria Cristina Casapu, Jan-Dierk Grunwaldt, Marek Maciejewski, Aflons Baiker