Patents by Inventor Stephan Six

Stephan Six has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11328831
    Abstract: Treating a reflective optical element (104) for the EUV wavelength range that has a reflective coating on a substrate. The reflective optical element in a holder (106) is irradiated with at least one radiation pulse of a radiation source (102) having a duration of between 1 ?s and 1 s. At least one radiation source (102) and the reflective optical element move relative to one another. Preferably, this is carried out directly after applying the reflective coating in a coating chamber (100). Reflective optical elements of this type are suitable in particular for use in EUV lithography or in EUV inspection of masks or wafers, for example.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: May 10, 2022
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Christian Grasse, Martin Hermann, Stephan Six, Joern Weber, Ralf Winter, Oliver Dier, Vitaliy Shklover, Kerstin Hild, Sebastian Strobel
  • Patent number: 11162778
    Abstract: A method for determining material removal by an ion beam (3) on a test workpiece (7) which is disposed in a machining chamber (5) of a housing (6) of a device (1) for beam machining, wherein the test workpiece (7) has a substrate (8) and a layer (9) applied to the substrate. The method includes a) optically determining a layer thickness (d1) of the layer applied to the substrate, b) removing material of the layer from the test workpiece with the ion beam, c) optically determining the layer thickness (d2) of the layer applied to the substrate, and d) determining the material removal by comparing the layer thickness determined in step a) with the layer thickness determined in step c). Also disclosed is a device (1) for beam machining a workpiece (2) with which the method can be carried out.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: November 2, 2021
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Steffen Bezold, Stephan Six
  • Publication number: 20200033115
    Abstract: A method for determining material removal by an ion beam (3) on a test workpiece (7) which is disposed in a machining chamber (5) of a housing (6) of a device (1) for beam machining, wherein the test workpiece (7) has a substrate (8) and a layer (9) applied to the substrate. The method includes a) optically determining a layer thickness (d1) of the layer applied to the substrate, b) removing material of the layer from the test workpiece with the ion beam, c) optically determining the layer thickness (d2) of the layer applied to the substrate, and d) determining the material removal by comparing the layer thickness determined in step a) with the layer thickness determined in step c). Also disclosed is a device (1) for beam machining a workpiece (2) with which the method can be carried out.
    Type: Application
    Filed: September 23, 2019
    Publication date: January 30, 2020
    Inventors: Steffen BEZOLD, Stephan SIX
  • Publication number: 20190146122
    Abstract: The present disclosure relates to an optical arrangement for use in an optical imaging process. The optical arrangement includes an optical element, an immersion zone and a liquid repelling device. During the optical imaging process, the immersion zone is located adjacent to the optical element and is filled with an immersion liquid. The optical element has a first surface region and a second surface region. During the optical imaging process, the first surface region is wetted by the immersion liquid. At least temporarily during the optical imaging process, the liquid repelling device generates an electrical field in the region of the second surface. The electrical field being is adapted to cause a repellent force on parts of the immersion liquid which are responsive to the electrical field and inadvertently contact the second surface region. The repellent force has a direction to drive away the parts of the immersion liquid from the second surface region.
    Type: Application
    Filed: October 15, 2018
    Publication date: May 16, 2019
    Inventor: Stephan Six
  • Publication number: 20190035512
    Abstract: Treating a reflective optical element (104) for the EUV wavelength range that has a reflective coating on a substrate. The reflective optical element in a holder (106) is irradiated with at least one radiation pulse of a radiation source (102) having a duration of between 1 ?s and 1 s. At least one radiation source (102) and the reflective optical element move relative to one another. Preferably, this is carried out directly after applying the reflective coating in a coating chamber (100). Reflective optical elements of this type are suitable in particular for use in EUV lithography or in EUV inspection of masks or wafers, for example.
    Type: Application
    Filed: July 31, 2018
    Publication date: January 31, 2019
    Inventors: Christian Grasse, Martin Hermann, Stephan Six, Joern WEBER, Ralf Winter, Oliver Dier, Vitaliy Shklover, Kerstin Hild, Sebastian Strobel
  • Patent number: 10107943
    Abstract: The present disclosure relates to an optical arrangement for use in an optical imaging process. The optical arrangement includes an optical element, an immersion zone and a liquid repelling device. During the optical imaging process, the immersion zone is located adjacent to the optical element and is filled with an immersion liquid. The optical element has a first surface region and a second surface region. During the optical imaging process, the first surface region is wetted by the immersion liquid. At least temporarily during the optical imaging process, the liquid repelling device generates an electrical field in the region of the second surface. The electrical field being is adapted to cause a repellent force on parts of the immersion liquid which are responsive to the electrical field and inadvertently contact the second surface region. The repellent force has a direction to drive away the parts of the immersion liquid from the second surface region.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: October 23, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Stephan Six
  • Publication number: 20170329055
    Abstract: The present disclosure relates to an optical arrangement for use in an optical imaging process. The optical arrangement includes an optical element, an immersion zone and a liquid repelling device. During the optical imaging process, the immersion zone is located adjacent to the optical element and is filled with an immersion liquid. The optical element has a first surface region and a second surface region. During the optical imaging process, the first surface region is wetted by the immersion liquid. At least temporarily during the optical imaging process, the liquid repelling device generates an electrical field in the region of the second surface. The electrical field being is adapted to cause a repellent force on parts of the immersion liquid which are responsive to the electrical field and inadvertently contact the second surface region. The repellent force has a direction to drive away the parts of the immersion liquid from the second surface region.
    Type: Application
    Filed: May 1, 2017
    Publication date: November 16, 2017
    Inventor: Stephan Six
  • Publication number: 20170322343
    Abstract: The disclosure relates to a microlithographic projection exposure apparatus, such as are used for the production of large-scale integrated electrical circuits and other microstructured components. The disclosure relates in particular to coatings of optical elements in order to increase or reduce the reflectivity.
    Type: Application
    Filed: July 24, 2017
    Publication date: November 9, 2017
    Inventors: Vladimir Kamenov, Daniel Kraehmer, Toralf Gruner, Karl-Stefan Weissenrieder, Heiko Feldmann, Achim Zirkel, Alexandra Pazidis, Bruno Thome, Stephan Six
  • Patent number: 9733395
    Abstract: The disclosure relates to a microlithographic projection exposure apparatus, such as are used for the production of large-scale integrated electrical circuits and other microstructured components. The disclosure relates in particular to coatings of optical elements in order to increase or reduce the reflectivity.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: August 15, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Vladimir Kamenov, Daniel Kraehmer, Toralf Gruner, Karl-Stefan Weissenrieder, Heiko Feldmann, Achim Zirkel, Alexandra Pazidis, Bruno Thome, Stephan Six
  • Patent number: 9645513
    Abstract: An optical arrangement for use in an optical imaging process includes an optical element, an immersion zone and a liquid repelling device. During the optical imaging process, the immersion zone is located adjacent to the optical element and is filled with an immersion liquid. The optical element has a first surface region and a second surface region. During the optical imaging process, the first surface region is wetted by the immersion liquid. At least temporarily during the optical imaging process, the liquid repelling device generates an electrical field in the region of the second surface. The electrical field being is adapted to cause a repellent force on parts of the immersion liquid which are responsive to the electrical field and inadvertently contact the second surface region. The repellent force has a direction to drive away the parts of the immersion liquid from the second surface region.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: May 9, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Stephan Six
  • Patent number: 8934079
    Abstract: An optical arrangement for use in an optical imaging process includes an optical element, an immersion zone and a liquid repelling device. During the optical imaging process, the immersion zone is located adjacent to the optical element and is filled with an immersion liquid. The optical element has a first surface region and a second surface region. During the optical imaging process, the first surface region is wetted by the immersion liquid. At least temporarily during the optical imaging process, the liquid repelling device generates an electrical field in the region of the second surface. The electrical field being is adapted to cause a repellent force on parts of the immersion liquid which are responsive to the electrical field and inadvertently contact the second surface region. The repellent force has a direction to drive away the parts of the immersion liquid from the second surface region.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: January 13, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Stephan Six
  • Publication number: 20150009565
    Abstract: The present disclosure relates to an optical arrangement for use in an optical imaging process. The optical arrangement includes an optical element, an immersion zone and a liquid repelling device. During the optical imaging process, the immersion zone is located adjacent to the optical element and is filled with an immersion liquid. The optical element has a first surface region and a second surface region. During the optical imaging process, the first surface region is wetted by the immersion liquid. At least temporarily during the optical imaging process, the liquid repelling device generates an electrical field in the region of the second surface. The electrical field being is adapted to cause a repellent force on parts of the immersion liquid which are responsive to the electrical field and inadvertently contact the second surface region. The repellent force has a direction to drive away the parts of the immersion liquid from the second surface region.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 8, 2015
    Inventor: Stephan Six
  • Publication number: 20140320955
    Abstract: The disclosure relates to a microlithographic projection exposure apparatus, such as are used for the production of large-scale integrated electrical circuits and other microstructured components. The disclosure relates in particular to coatings of optical elements in order to increase or reduce the reflectivity.
    Type: Application
    Filed: July 15, 2014
    Publication date: October 30, 2014
    Inventors: Vladimir Kamenov, Daniel Kraehmer, Toralf Gruner, Karl-Stefan Weissenrieder, Heiko Feldmann, Achim Zirkel, Alexandra Pazidis, Bruno Thome, Stephan Six
  • Patent number: 8564925
    Abstract: A wafer chuck (1b) having a substrate (2) and having, applied to the substrate (2), an electrically conductive coating (8) for fixing a wafer (6) by electrostatic attraction and preferably having a reflective coating (10) applied to the substrate (2). The coating (8; 10) has at least a first layer (3; 11) under compressive stress and at least a second layer (7; 12) under tensile stress for compensating for the compressive stress of the first layer (3; 11) in order to keep deformation of the wafer chuck (1b) by the coating (8, 10) as low as possible.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: October 22, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Stephan Six
  • Patent number: 8279402
    Abstract: An optical arrangement for immersion lithography, having at least one component (1) to which a hydrophobic coating (6, 7) is applied, the hydrophobic coating (6, 7) being exposed to UV radiation during operation of a projection lens, and the at least one component (1) being wetted at least in part by an immersion fluid during operation of the projection lens. The hydrophobic coating (6, 7) includes at least one UV-resistant layer (6) that absorbs and/or reflects UV radiation at a wavelength of less than 260 nm.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: October 2, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Stephan Six, Michael Lill, Ruediger Duesing, Bernhard Gellrich, Michael Widmann, Andreas Schubert, Tilmann Von Papen, Thomas Ihl
  • Publication number: 20120062865
    Abstract: An optical arrangement for use in an optical imaging process includes an optical element, an immersion zone and a liquid repelling device. During the optical imaging process, the immersion zone is located adjacent to the optical element and is filled with an immersion liquid. The optical element has a first surface region and a second surface region. During the optical imaging process, the first surface region is wetted by the immersion liquid. At least temporarily during the optical imaging process, the liquid repelling device generates an electrical field in the region of the second surface. The electrical field being is adapted to cause a repellent force on parts of the immersion liquid which are responsive to the electrical field and inadvertently contact the second surface region. The repellent force has a direction to drive away the parts of the immersion liquid from the second surface region.
    Type: Application
    Filed: October 31, 2011
    Publication date: March 15, 2012
    Applicant: Carl Zeiss SMT GmbH
    Inventor: Stephan Six
  • Publication number: 20110310524
    Abstract: A wafer chuck (1b) having a substrate (2) and having, applied to the substrate (2), an electrically conductive coating (8) for fixing a wafer (6) by electrostatic attraction and preferably having a reflective coating (10) applied to the substrate (2). The coating (8; 10) has at least a first layer (3; 11) under compressive stress and at least a second layer (7; 12) under tensile stress for compensating for the compressive stress of the first layer (3; 11) in order to keep deformation of the wafer chuck (1b) by the coating (8, 10) as low as possible.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 22, 2011
    Applicant: CARL ZEISS SMT GmbH
    Inventor: Stephan Six
  • Publication number: 20110222043
    Abstract: The disclosure relates to a microlithographic projection exposure apparatus, such as are used for the production of large-scale integrated electrical circuits and other microstructured components. The disclosure relates in particular to coatings of optical elements in order to increase or reduce the reflectivity.
    Type: Application
    Filed: May 20, 2011
    Publication date: September 15, 2011
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Vladimir Kamenov, Daniel Kraehmer, Toralf Gruner, Karl-Stefan Weissenrieder, Heiko Feldmann, Achim Zirkel, Alexandra Pazidis, Bruno Thome, Stephan Six
  • Patent number: 8007711
    Abstract: In a method for operating a converter (1), in which the converter (1) is mounted in a carrying ring (3) by means of carrying journals (2), a gear mechanism (4) is mounted in a floating manner on the carrying journals (2), the converter (1) is configured, as a result, such that it can tilt about its horizontal axis and the gear mechanism (4) is connected rigidly to a pedestal (6) by a torque support (5), the torque support (5) connects the gear mechanism (4) to the pedestal (6) during the tilting operation of the converter (1), and the torque support (5) is released from the pedestal (6) or from the gear mechanism (4) or from both during operation of the converter (1).
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: August 30, 2011
    Assignee: SMSDEMAG Aktiengesellschaft
    Inventors: Christian Imiela, Stephan Schulze, Stephan Six, Christoph Sundermann, Joerg Hertel, Rolf Best
  • Patent number: 7738187
    Abstract: An optical element (1) made of a material that is transparent to wavelengths in the UV region, which optical element (1) includes an oleophobic coating (6, 7) outside of its optically free diameter whose disperse component of the surface energy is preferably 25 mN/m or less, particularly preferably 20 mN/m or less, in particular 15 mN/m or less. In addition or as an alternative, the optical element (1) within its optically free diameter comprises an oleophilic coating (9b, 9c) that is transparent to wavelengths in the UV region, with the disperse component of the surface energy of this coating preferably being more than 25 mN/m, particularly preferably more than 30 mN/m, in particular more than 40 mN/m. The optical element may be provided in an arrangement in which it dips at least partially into an organic liquid.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: June 15, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Alexandra Pazidis, Stephan Six, Ruediger Duesing, Gennady Fedosenko