Patents by Inventor Stephane Allegret-Maret

Stephane Allegret-Maret has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220181390
    Abstract: A pixel includes a first electrode layer on an exposed surface of an interconnection structure and in contact with a conductive element of the interconnection structure. An insulating layer extends over the first electrode layer and includes opening crossing through the insulating layer to the first electrode layer. A second electrode layer is on top of and in contact with the first electrode layer and the insulating layer in the opening. A film configured to convert photons into electron-hole pairs is on the insulating layer, the second electrode layer and filling the opening. A third electrode layer covers the film.
    Type: Application
    Filed: December 6, 2021
    Publication date: June 9, 2022
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Thierry BERGER, Stephane ALLEGRET-MARET
  • Patent number: 10199413
    Abstract: A color image sensor including an array of pixels is formed in a semiconductor layer having a back side that receives an illumination. Insulated conductive walls penetrate into the semiconductor layer from the back side and separate the pixels from one another. For each pixel, a color pixel penetrates into from 5 to 30% of a thickness of the semiconductor layer from the back side and occupies at least 90% of the surface area delimited by the walls. An electrically-conductive layer extends from the lateral wall of the filter all the way to the walls.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: February 5, 2019
    Assignees: STMICROELECTRONICS SA, STMICROELECTRONICS(CROLLES 2) SAS
    Inventors: Axel Crocherie, Jean-Pierre Oddou, Stéphane Allegret-Maret, Hugues Leininger
  • Patent number: 10170475
    Abstract: An improved transistor with channel epitaxial silicon. In one aspect, a method of fabrication includes: forming a gate stack structure on an epitaxial silicon region disposed on a substrate, a width dimension of the epitaxial silicon region approximating a width dimension of the gate stack structure; and growing a raised epitaxial source and drain from the substrate, the raised epitaxial source and drain in contact with the epitaxial silicon region and the gate stack structure. For a SRAM device, further: removing an epitaxial layer in contact with the silicon substrate and the raised source and drain and to which the epitaxial silicon region is coupled leaving a space above the silicon substrate and under the raised epitaxial source and drain; and filling the space with an insulating layer and isolating the raised epitaxial source and drain and a channel of the transistor from the silicon substrate.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: January 1, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, STMICROELECTRONICS, INC.
    Inventors: Stephane Allegret-Maret, Kangguo Cheng, Bruce Doris, Prasanna Khare, Qing Liu, Nicolas Loubet
  • Patent number: 10038075
    Abstract: An improved transistor with channel epitaxial silicon and methods for fabrication thereof. In one aspect, a method for fabricating a transistor includes: forming a gate stack structure on an epitaxial silicon region, a width dimension of the epitaxial silicon region approximating a width dimension of the gate stack structure; encapsulating the epitaxial silicon region under the gate stack structure with sacrificial spacers formed on both sides of the gate stack structure and the epitaxial silicon region; forming a channel of the transistor having a width dimension that approximates that of the epitaxial silicon region and the gate stack structure, the epitaxial silicon region and the gate stack structure formed on the channel of the transistor; removing the sacrificial spacers; and growing a raised epitaxial source and drain from the silicon substrate, with portions of the raised epitaxial source and drain in contact with the epitaxial silicon region.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: July 31, 2018
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, STMICROELECTRONICS, INC.
    Inventors: Stephane Allegret-Maret, Kangguo Cheng, Bruce Doris, Prasanna Khare, Qing Liu, Nicolas Loubet
  • Publication number: 20180102387
    Abstract: A color image sensor including an array of pixels is formed in a semiconductor layer having a back side that receives an illumination. Insulated conductive walls penetrate into the semiconductor layer from the back side and separate the pixels from one another. For each pixel, a color pixel penetrates into from 5 to 30% of a thickness of the semiconductor layer from the back side and occupies at least 90% of the surface area delimited by the walls. An electrically-conductive layer extends from the lateral wall of the filter all the way to the walls.
    Type: Application
    Filed: December 12, 2017
    Publication date: April 12, 2018
    Inventors: Axel Crocherie, Jean-Pierre Oddou, Stéphane Allegret-Maret, Hugues Leininger
  • Patent number: 9859319
    Abstract: A color image sensor including an array of pixels is formed in a semiconductor layer having a back side that receives an illumination. Insulated conductive walls penetrate into the semiconductor layer from the back side and separate the pixels from one another. For each pixel, a color pixel penetrates into from 5 to 30% of a thickness of the semiconductor layer from the back side and occupies at least 90% of the surface area delimited by the walls. An electrically-conductive layer extends from the lateral wall of the filter all the way to the walls.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: January 2, 2018
    Assignees: STMicroelectronics SA, STMicroelectronics (Crolles 2) SAS
    Inventors: Axel Crocherie, Jean-Pierre Oddou, Stéphane Allegret-Maret, Hugues Leininger
  • Publication number: 20170179137
    Abstract: An improved transistor with channel epitaxial silicon. In one aspect, a method of fabrication includes: forming a gate stack structure on an epitaxial silicon region disposed on a substrate, a width dimension of the epitaxial silicon region approximating a width dimension of the gate stack structure; and growing a raised epitaxial source and drain from the substrate, the raised epitaxial source and drain in contact with the epitaxial silicon region and the gate stack structure. For a SRAM device, further: removing an epitaxial layer in contact with the silicon substrate and the raised source and drain and to which the epitaxial silicon region is coupled leaving a space above the silicon substrate and under the raised epitaxial source and drain; and filling the space with an insulating layer and isolating the raised epitaxial source and drain and a channel of the transistor from the silicon substrate.
    Type: Application
    Filed: March 3, 2017
    Publication date: June 22, 2017
    Inventors: STEPHANE ALLEGRET-MARET, KANGGUO CHENG, BRUCE DORIS, PRASANNA KHARE, QING LIU, NICOLAS LOUBET
  • Patent number: 9685475
    Abstract: A back-illuminated integrated imaging device is formed from a semiconductor substrate including a zone of pixels bounded by capacitive deep trench isolations. A peripheral zone is located outside the zone of pixels. A continuous electrically conductive layer forms, in the zone of pixels, an electrode in a trench for each capacitive deep trench isolation, and forms, in the peripheral zone, a redistribution layer for electrically coupling the electrode to a biasing contact pad. The electrode is located in the trench between a trench dielectric and at least one material for filling the trench.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: June 20, 2017
    Assignee: STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Francois Guyader, Jean-Pierre Oddou, Stephane Allegret-Maret, Mickael Gros-Jean
  • Publication number: 20170170299
    Abstract: An improved transistor with channel epitaxial silicon and methods for fabrication thereof. In one aspect, a method for fabricating a transistor includes: forming a gate stack structure on an epitaxial silicon region, a width dimension of the epitaxial silicon region approximating a width dimension of the gate stack structure; encapsulating the epitaxial silicon region under the gate stack structure with sacrificial spacers formed on both sides of the gate stack structure and the epitaxial silicon region; forming a channel of the transistor having a width dimension that approximates that of the epitaxial silicon region and the gate stack structure, the epitaxial silicon region and the gate stack structure formed on the channel of the transistor; removing the sacrificial spacers; and growing a raised epitaxial source and drain from the silicon substrate, with portions of the raised epitaxial source and drain in contact with the epitaxial silicon region.
    Type: Application
    Filed: February 21, 2017
    Publication date: June 15, 2017
    Inventors: STEPHANE ALLEGRET-MARET, KANGGUO CHENG, BRUCE DORIS, PRASANNA KHARE, QING LIU, NICOLAS LOUBET
  • Patent number: 9620507
    Abstract: An improved transistor with channel epitaxial silicon and methods for fabrication thereof. In one aspect, a method for fabricating a transistor includes: forming a gate stack structure on an epitaxial silicon region, a width dimension of the epitaxial silicon region approximating a width dimension of the gate stack structure; encapsulating the epitaxial silicon region under the gate stack structure with sacrificial spacers formed on both sides of the gate stack structure and the epitaxial silicon region; forming a channel of the transistor having a width dimension that approximates that of the epitaxial silicon region and the gate stack structure, the epitaxial silicon region and the gate stack structure formed on the channel of the transistor; removing the sacrificial spacers; and growing a raised epitaxial source and drain from the silicon substrate, with portions of the raised epitaxial source and drain in contact with the epitaxial silicon region.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: April 11, 2017
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: Nicolas Loubet, Qing Liu, Prasanna Khare, Stephane Allegret-Maret, Bruce Doris, Kangguo Cheng
  • Patent number: 9620506
    Abstract: An improved transistor with channel epitaxial silicon. In one aspect, a method of fabrication includes: forming a gate stack structure on an epitaxial silicon region disposed on a substrate, a width dimension of the epitaxial silicon region approximating a width dimension of the gate stack structure; and growing a raised epitaxial source and drain from the substrate, the raised epitaxial source and drain in contact with the epitaxial silicon region and the gate stack structure. For a SRAM device, further: removing an epitaxial layer in contact with the silicon substrate and the raised source and drain and to which the epitaxial silicon region is coupled leaving a space above the silicon substrate and under the raised epitaxial source and drain; and filling the space with an insulating layer and isolating the raised epitaxial source and drain and a channel of the transistor from the silicon substrate.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: April 11, 2017
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: Nicolas Loubet, Qing Liu, Prasanna Khare, Stephane Allegret-Maret, Bruce Doris, Kangguo Cheng
  • Publication number: 20160233258
    Abstract: A color image sensor including an array of pixels is formed in a semiconductor layer having a back side that receives an illumination. Insulated conductive walls penetrate into the semiconductor layer from the back side and separate the pixels from one another. For each pixel, a color pixel penetrates into from 5 to 30% of a thickness of the semiconductor layer from the back side and occupies at least 90% of the surface area delimited by the walls. An electrically-conductive layer extends from the lateral wall of the filter all the way to the walls.
    Type: Application
    Filed: October 27, 2015
    Publication date: August 11, 2016
    Inventors: Axel CROCHERIE, Jean-Pierre ODDOU, Stéphane ALLEGRET-MARET, Hugues LEININGER
  • Publication number: 20160099278
    Abstract: A back-illuminated integrated imaging device is formed from a semiconductor substrate including a zone of pixels bounded by capacitive deep trench isolations. A peripheral zone is located outside the zone of pixels. A continuous electrically conductive layer forms, in the zone of pixels, an electrode in a trench for each capacitive deep trench isolation, and forms, in the peripheral zone, a redistribution layer for electrically coupling the electrode to a biasing contact pad. The electrode is located in the trench between a trench dielectric and at least one material for filling the trench.
    Type: Application
    Filed: September 8, 2015
    Publication date: April 7, 2016
    Applicant: STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Francois Guyader, Jean-Pierre Oddou, Stephane Allegret-Maret, Mickael Gros-Jean
  • Patent number: 9224775
    Abstract: An integrated circuit includes a back side illuminated image sensor formed by a substrate supporting at least one pixel, an interconnect part situated above a front side of the substrate and an anti-reflective layer situated above a back side of the substrate. The anti-reflective layer may be formed of a silicon nitride layer. An additional layer is situated above the anti-reflective layer. The additional layer is formed of one of amorphous silicon nitride or hydrogenated amorphous silicon nitride, in which the ratio of the number of silicon atoms per cubic centimeter to the number of nitrogen atoms per cubic centimeter is greater than 0.7.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: December 29, 2015
    Assignees: STMicroelectronics (Crolles 2) SAS, Commissariat A L'Energie Atomique et aux Energies Alternatives
    Inventors: Jean-Pierre Carrere, Patrick Gros D'Aillon, Stephane Allegret-Maret, Jean-Pierre Oddou
  • Patent number: 9006816
    Abstract: A memory device may include a semiconductor substrate, and a memory transistor in the semiconductor substrate. The memory transistor may include source and drain regions in the semiconductor substrate and a channel region therebetween, and a gate stack. The gate stack may include a first dielectric layer over the channel region, a first diffusion barrier layer over the first dielectric layer, a first electrically conductive layer over the first diffusion barrier layer, a second dielectric layer over the first electrically conductive layer, a second diffusion barrier layer over the second dielectric layer, and a second electrically conductive layer over the second diffusion barrier layer. The first and second dielectric layers may include different dielectric materials, and the first diffusion barrier layer may be thinner than the second diffusion barrier layer.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: April 14, 2015
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: Prasanna Khare, Stephane Allegret-Maret, Nicolas Loubet, Qing Liu, Hemanth Jagannathan, Lisa Edge, Kangguo Cheng, Bruce Doris
  • Publication number: 20150035106
    Abstract: An integrated circuit includes a back side illuminated image sensor formed by a substrate supporting at least one pixel, an interconnect part situated above a front side of the substrate and an anti-reflective layer situated above a back side of the substrate. The anti-reflective layer may be formed of a silicon nitride layer. An additional layer is situated above the anti-reflective layer. The additional layer is formed of one of amorphous silicon nitride or hydrogenated amorphous silicon nitride, in which the ratio of the number of silicon atoms per cubic centimeter to the number of nitrogen atoms per cubic centimeter is greater than 0.7.
    Type: Application
    Filed: July 30, 2014
    Publication date: February 5, 2015
    Applicants: STMicroelectronics (Crolles 2) SAS, Commissariat A L'Energie Atomique et aux Energies Alternatives
    Inventors: Jean-Pierre Carrere, Patrick Gros D'Aillon, Stephane Allegret-Maret, Jean-Pierre Oddou
  • Publication number: 20140353718
    Abstract: An improved transistor with channel epitaxial silicon and methods for fabrication thereof. In one aspect, a method for fabricating a transistor includes: forming a gate stack structure on an epitaxial silicon region, a width dimension of the epitaxial silicon region approximating a width dimension of the gate stack structure; encapsulating the epitaxial silicon region under the gate stack structure with sacrificial spacers formed on both sides of the gate stack structure and the epitaxial silicon region; forming a channel of the transistor having a width dimension that approximates that of the epitaxial silicon region and the gate stack structure, the epitaxial silicon region and the gate stack structure formed on the channel of the transistor; removing the sacrificial spacers; and growing a raised epitaxial source and drain from the silicon substrate, with portions of the raised epitaxial source and drain in contact with the epitaxial silicon region.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Applicants: International Business Machines Corporation, STMicroelectronics, Inc.
    Inventors: Nicolas Loubet, Qing Liu, Prasanna Khare, Stephane Allegret-Maret, Bruce Doris, Kangguo Cheng
  • Publication number: 20140353717
    Abstract: An improved transistor with channel epitaxial silicon. In one aspect, a method of fabrication includes: forming a gate stack structure on an epitaxial silicon region disposed on a substrate, a width dimension of the epitaxial silicon region approximating a width dimension of the gate stack structure; and growing a raised epitaxial source and drain from the substrate, the raised epitaxial source and drain in contact with the epitaxial silicon region and the gate stack structure. For a SRAM device, further: removing an epitaxial layer in contact with the silicon substrate and the raised source and drain and to which the epitaxial silicon region is coupled leaving a space above the silicon substrate and under the raised epitaxial source and drain; and filling the space with an insulating layer and isolating the raised epitaxial source and drain and a channel of the transistor from the silicon substrate.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Applicants: International Business Machines Corporation, STMicroelectronics, Inc.
    Inventors: Nicolas Loubet, Qing Liu, Prasanna Khare, Stephane Allegret-Maret, Bruce Doris, Kangguo Cheng
  • Patent number: 8860123
    Abstract: A memory device may include a semiconductor substrate, and a memory transistor in the semiconductor substrate. The memory transistor may include source and drain regions in the semiconductor substrate and a channel region therebetween, and a gate stack having a first dielectric layer over the channel region, a second dielectric layer over the first dielectric layer, a first diffusion barrier layer over the second dielectric layer, a first electrically conductive layer over the first diffusion barrier layer, a second diffusion barrier layer over the first electrically conductive layer, and a second electrically conductive layer over the second diffusion barrier layer. The first and second dielectric layers may include different dielectric materials, and the first diffusion barrier layer may be thinner than the second diffusion barrier layer.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: October 14, 2014
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: Prasanna Khare, Stephane Allegret-Maret, Nicolas Loubet, Qing Liu, Hemanth Jagannathan, Lisa Edge, Kangguo Cheng, Bruce Doris
  • Publication number: 20140291750
    Abstract: A memory device may include a semiconductor substrate, and a memory transistor in the semiconductor substrate. The memory transistor may include source and drain regions in the semiconductor substrate and a channel region therebetween, and a gate stack having a first dielectric layer over the channel region, a second dielectric layer over the first dielectric layer, a first diffusion barrier layer over the second dielectric layer, a first electrically conductive layer over the first diffusion barrier layer, a second diffusion barrier layer over the first electrically conductive layer, and a second electrically conductive layer over the second diffusion barrier layer. The first and second dielectric layers may include different dielectric materials, and the first diffusion barrier layer may be thinner than the second diffusion barrier layer.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 2, 2014
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, STMICROELECTRONICS, INC.
    Inventors: Prasanna KHARE, Stephane Allegret-Maret, Nicolas Loubet, Qing Liu, Hemanth Jagannathan, Lisa Edge, Kangguo Cheng, Bruce Doris