Patents by Inventor Stephane Chamaly

Stephane Chamaly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11742823
    Abstract: A BAW resonator (BAWR) with improved power durability and improved heat resistance is provided. The resonator comprises a layer stack with a piezoelectric material (PM) between a bottom electrode (ELI) and a top electrode (EL2) and a shunt path parallel (PCPP) to the layer stack provided to enable an RF signal to bypass the layer stack, e.g. to ground (GND). The shunt path (PCPP) has a temperature dependent conductance with a negative temperature coefficient, NTC, of resistance. When the temperature of the device rises due to high power operation, currents that would otherwise permanently damage the device are shunted to ground or another dedicated terminal by the temperature dependent shunt path. Upon cooling down normal operation is resumed.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: August 29, 2023
    Assignee: RF360 Singapore
    Inventors: Maximilian Schiek, Roland Rosezin, Willi Aigner, Thomas Mittermaier, Edgar Schmidhammer, Stephane Chamaly, Xavier Perois, Christian Huck, Alexandre Augusto Shirakawa
  • Publication number: 20210036684
    Abstract: A BAW resonator (BAWR) with improved power durability and improved heat resistance is provided. The resonator comprises a layer stack with a piezoelectric material (PM) between a bottom electrode (ELI) and a top electrode (EL2) and a shunt path parallel (PCPP) to the layer stack provided to enable an RF signal to bypass the layer stack, e.g. to ground (GND). The shunt path (PCPP) has a temperature dependent conductance with a negative temperature coefficient, NTC, of resistance. When the temperature of the device rises due to high power operation, currents that would otherwise permanently damage the device are shunted to ground or another dedicated terminal by the temperature dependent shunt path. Upon cooling down normal operation is resumed.
    Type: Application
    Filed: March 5, 2019
    Publication date: February 4, 2021
    Inventors: Maximilian SCHIEK, Roland ROSEZIN, Willi AIGNER, Thomas MITTERMAIER, Edgar SCHMIDHAMMER, Stephane Chamaly, Xavier PEROIS, Christian HUCK, Alendre Augusto SHIRAKAWA
  • Patent number: 9391589
    Abstract: A surface acoustic wave filter includes a ?-rotated Y-cut X-propagation lithium niobate substrate. The cut angle ranges from 20° to 40°. An interdigital transducer can be used for exciting a surface acoustic wave that is formed on the substrate.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: July 12, 2016
    Assignee: EPCOS AG
    Inventors: Stephane Chamaly, Hoi Yan Anna Fong
  • Publication number: 20140028414
    Abstract: A surface acoustic wave filter includes a ?-rotated Y-cut X-propagation lithium niobate substrate. The cut angle ranges from 20° to 40°. An interdigital transducer can be used for exciting a surface acoustic wave that is formed on the substrate.
    Type: Application
    Filed: January 24, 2011
    Publication date: January 30, 2014
    Applicant: EPCOS AG
    Inventors: Stephane Chamaly, Hoi Yan Anna Fong
  • Patent number: 8425875
    Abstract: The low Ta impurity content in pyrochlore ore makes it unnecessary to use a solvent extraction process to separate Nb from Ta. Consequently, niobium pentoxide powders using this ore can be produced at lower cost than competing mining/refining approaches, but in turn contain significant amounts of Ta impurities. SAW wafers are grown from melts produced by reacting niobium pentoxide powders containing Ta impurities at levels of 200 ppm or more by weight. Given proper amounts of starting powders, crystals can be grown with good yields and reproducible properties that satisfy typical SAW wafer specifications. The consistency across various lots of powders may be further improved by adding an appropriate amount of Ta pentoxide to the starting powders.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: April 23, 2013
    Assignee: Crystal Technology, Inc.
    Inventors: Maria Claudia Custodio Kajiyama, Dieter Hans Jundt, Stephane Chamaly
  • Publication number: 20110059007
    Abstract: The low Ta impurity content in pyrochlore ore makes it unnecessary to use a solvent extraction process to separate Nb from Ta. Consequently, niobium pentoxide powders using this ore can be produced at lower cost than competing mining/refining approaches, but in turn contain significant amounts of Ta impurities. SAW wafers are grown from melts produced by reacting niobium pentoxide powders containing Ta impurities at levels of 200 ppm or more by weight. Given proper amounts of starting powders, crystals can be grown with good yields and reproducible properties that satisfy typical SAW wafer specifications. The consistency across various lots of powders may be further improved by adding an appropriate amount of Ta pentoxide to the starting powders.
    Type: Application
    Filed: August 27, 2010
    Publication date: March 10, 2011
    Inventors: Maria Claudia Custodio Kajiyama, Dieter Hans Jundt, Stephane Chamaly