Patents by Inventor Stephane Damien Thuries

Stephane Damien Thuries has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12040754
    Abstract: An amplifier circuit comprising: an amplifier; an output limiter for providing a variable impedance comprising: a first and second limiter terminal; a transistor comprising a conduction channel; a first resistor coupled in parallel with the conduction channel; and a capacitor coupled in series with the conduction channel between the conduction channel and the first or second limiter terminal; and a feedback control unit comprising a comparator block configured to provide a control signal to the output limiter based on a comparison of the amplifier output signal and a setting voltage; wherein: the first limiter terminal is coupled to the amplifier input or output; the second limiter terminal receives a reference voltage; and wherein receipt of the control signal at the transistor provides for a variable impedance for the amplifier circuit dependent on the amplifier output signal.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: July 16, 2024
    Assignee: NXP USA, Inc.
    Inventors: Pierre Pascal Savary, Stephane Damien Thuriés
  • Publication number: 20240056057
    Abstract: In accordance with a first aspect of the present disclosure, a tunable attenuator is provided, comprising: one or more transformer windings configured to facilitate attenuating a signal; one or more conductive loops provided underneath the transforming windings; a controller configured to control an amount of current flowing through the conductive loops, thereby providing a tunable attenuation of said signal. In accordance with a second aspect of the present disclosure, a corresponding method of producing a tunable attenuator is conceived.
    Type: Application
    Filed: August 8, 2023
    Publication date: February 15, 2024
    Inventors: Pierre Pascal Savary, Mohamad El Ozeir, Stephane Damien Thuriés
  • Publication number: 20220344288
    Abstract: An integrated circuit device includes an integrated circuit device die and a substrate. The integrated circuit device die includes a plurality of first contact pads. The first contact pads include a pair of first signal contact pads configured to provide a differential signal port of the integrated circuit device die. The differential signal port is configured to operate at a predetermined frequency. The substrate includes a plurality of second contact pads on a first surface of the substrate. The second contact pads are configured to be soldered to a printed circuit board, and include a pair of second signal contact pads. The integrated circuit device die is affixed to a second surface of the substrate via the first contact pads. The substrate includes a pair of circuit paths that each couple one of the first signal contact pads to an associated one of the second signal contact pads.
    Type: Application
    Filed: April 8, 2022
    Publication date: October 27, 2022
    Inventors: Harish Nandagopal, Stephane Damien Thuriés, Didier Salle
  • Patent number: 11460542
    Abstract: Multi-channel radio frequency (RF) transmitter (100) and method of calibrating the transmitter are provided.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: October 4, 2022
    Assignee: NXP USA, INC.
    Inventors: Olivier Vincent Doare, Stephane Damien Thuries, Gilles Montoriol
  • Patent number: 11431375
    Abstract: A transceiver includes a transmitter, a frequency synthesizer coupled to the transmitter, a receiver coupled to the frequency synthesizer and a voltage sensor; and a digital controller coupled to the voltage sensor, the receiver, and the transmitter, wherein based on a DC voltage measurement of an IF signal made by the voltage sensor, a relative phase adjustment occurs of a relative phase associated with a local oscillator (LO) port and a radio frequency (RF) port of the receiver.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: August 30, 2022
    Assignee: NXP USA, Inc.
    Inventors: Pierre Pascal Savary, Stephane Damien Thuries, Didier Salle
  • Publication number: 20210408971
    Abstract: There is disclosed an amplifier circuit comprising: an amplifier having input and output terminals; a temperature dependent variable impedance unit comprising: a first terminal, a second terminal and a variable impedance unit control terminal; a transistor comprising a transistor control terminal coupled to the variable impedance unit control terminal; a first resistor coupled in parallel with the conduction channel; a capacitor coupled in series with the conduction channel between the conduction channel and one of: the first terminal; and the second terminal; and wherein: the first terminal is coupled to one of: the input terminal and the output terminal; the second terminal is for coupling to a reference node; and the variable impedance unit control terminal is configured to receive a control signal that is based on a measured temperature indicative of a temperature of the amplifier circuit and thereby provide a temperature dependent variable impedance for the amplifier circuit.
    Type: Application
    Filed: June 16, 2021
    Publication date: December 30, 2021
    Inventors: Pierre Pascal Savary, Stephane Damien Thuriés
  • Publication number: 20210408974
    Abstract: An amplifier circuit comprising: an amplifier; an output limiter for providing a variable impedance comprising: a first and second limiter terminal; a transistor comprising a conduction channel; a first resistor coupled in parallel with the conduction channel; and a capacitor coupled in series with the conduction channel between the conduction channel and the first or second limiter terminal; and a feedback control unit comprising a comparator block configured to provide a control signal to the output limiter based on a comparison of the amplifier output signal and a setting voltage; wherein: the first limiter terminal is coupled to the amplifier input or output; the second limiter terminal receives a reference voltage; and wherein receipt of the control signal at the transistor provides for a variable impedance for the amplifier circuit dependent on the amplifier output signal.
    Type: Application
    Filed: June 16, 2021
    Publication date: December 30, 2021
    Inventors: Pierre Pascal Savary, Stephane Damien Thuriés
  • Patent number: 10992304
    Abstract: An example apparatus (100) is for use for use with front-end circuitry (102) to transmit and receive radar wave signals, The apparatus (100) includes digital phase locked loop (PLL) circuitry (104) and a control circuit (106). The digital PLL circuitry (106) provides a chirp sequence with frequency modulated continuous wave signals (FMCW), the FMCW signals being chirps containing a start frequency and a stop frequency, representing a selected chirp bandwidth (BW). The digital PLL circuitry (104) includes the DCO circuit (108) which frequency resolution is configured and arranged to be tuned relative to the selected chirp BW, the frequency resolution configured in response to a selected level of capacitance. The control circuit (106) controls the selected level of capacitance used by the DCO circuit (108) by changing the frequency resolution of the DCO according to the selected chirp BW, wherein different frequency resolutions are used for a first selected chirp BW and for a second selected chirp BW.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: April 27, 2021
    Assignee: NXP USA, INC.
    Inventors: Cristian Pavao Moreira, Didier Salle, Stephane Damien Thuries
  • Publication number: 20200366299
    Abstract: An example apparatus (100) is for use for use with front-end circuitry (102) to transmit and receive radar wave signals, The apparatus (100) includes digital phase locked loop (PLL) circuitry (104) and a control circuit (106). The digital PLL circuitry (106) provides a chirp sequence with frequency modulated continuous wave signals (FMCW), the FMCW signals being chirps containing a start frequency and a stop frequency, representing a selected chirp bandwidth (BW). The digital PLL circuitry (104) includes the DCO circuit (108) which frequency resolution is configured and arranged to be tuned relative to the selected chirp BW, the frequency resolution configured in response to a selected level of capacitance. The control circuit (106) controls the selected level of capacitance used by the DCO circuit (108) by changing the frequency resolution of the DCO according to the selected chirp BW, wherein different frequency resolutions are used for a first selected chirp BW and for a second selected chirp BW.
    Type: Application
    Filed: May 15, 2020
    Publication date: November 19, 2020
    Inventors: Cristian Pavao Moreira, Didier Salle, Stephane Damien Thuries
  • Publication number: 20200186186
    Abstract: A transceiver includes a transmitter, a frequency synthesizer coupled to the transmitter, a receiver coupled to the frequency synthesizer and a voltage sensor; and a digital controller coupled to the voltage sensor, the receiver, and the transmitter, wherein based on a DC voltage measurement of an IF signal made by the voltage sensor, a relative phase adjustment occurs of a relative phase associated with a local oscillator (LO) port and a radio frequency (RF) port of the receiver.
    Type: Application
    Filed: November 21, 2019
    Publication date: June 11, 2020
    Inventors: Pierre Pascal Savary, Stephane Damien Thuries, Didier Salle
  • Publication number: 20200158821
    Abstract: Multi-channel radio frequency (RF) transmitter (100) and method of calibrating the transmitter are provided.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 21, 2020
    Inventors: Olivier Vincent Doare, Stephane Damien Thuries, Gilles Montoriol
  • Patent number: 9711471
    Abstract: A semiconductor device package comprising a circuit chip and a wafer level chip scale package is designed for reducing capacitive interactions which exist between electrically conducting portions of the circuit chip and under-bump metallization areas of the package. Such design is beneficial in particular for under-bump metallization areas which are dedicated to transferring signals having frequencies above 30 GHz.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: July 18, 2017
    Assignee: NXP USA, Inc.
    Inventors: Charaf-Eddine Souria, Gilles Montoriol, Stéphane Damien Thuries
  • Publication number: 20170141057
    Abstract: A semiconductor device package comprising a circuit chip and a wafer level chip scale package is designed for reducing capacitive interactions which exist between electrically conducting portions of the circuit chip and under-bump metallization areas of the package. Such design is beneficial in particular for under-bump metallization areas which are dedicated to transferring signals having frequencies above 30 GHz.
    Type: Application
    Filed: April 18, 2016
    Publication date: May 18, 2017
    Inventors: Charaf-Eddine Souria, Gilles Montoriol, Stéphane Damien Thuries