Patents by Inventor Stephane Laurent-Michel

Stephane Laurent-Michel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200153466
    Abstract: A first microwave backhaul assembly comprises a first antenna, a front-end circuit, an inter-backhaul-assembly interface circuit, and an interference cancellation circuit. The first antenna is operable to receive a first microwave signal. The front-end circuit is operable to convert the first microwave signal to a lower-frequency digital signal, wherein the lower-frequency digital signal has energy of a second microwave signal and energy of a third microwave signal. The inter-backhaul-assembly interface circuit is operable to receive information from a second microwave backhaul assembly. The interference cancellation circuit is operable to use the information received via the inter-backhaul-assembly interface circuit during processing of the lower-frequency digital signal to remove, from the first microwave signal, the energy of the third microwave signal. The information received via the inter-backhaul-assembly interface may comprise a signal having energy of the second microwave signal.
    Type: Application
    Filed: May 28, 2019
    Publication date: May 14, 2020
    Inventors: Stephane Laurent-Michel, Curtis Ling
  • Publication number: 20200028533
    Abstract: Systems and methods are provided for receiver nonlinearity estimation and cancellation. Narrowband (NB) estimation may be performed in a receiver during handling of received radio frequency (RF) signals. The narrowband (NB) may include generating estimation channelization information relating to received RF signals; generating reference nonlinearity information relating to one or more other signals, which may cause or contribute to nonlinearity that affects the processing of the received RF signals; and generating, based on the estimation channelization information relating to the received RF signals and the reference nonlinearity information relating to the other signals, control data for configuring nonlinearity cancellation functions. The received RF signals may be channelized, and the estimation channelization information may be generated based on the channelization of the received RF signals.
    Type: Application
    Filed: October 1, 2019
    Publication date: January 23, 2020
    Inventors: Wen-Chi Tu, Stephane Laurent-Michel
  • Patent number: 10432243
    Abstract: Systems and methods are provided for receiver nonlinearity estimation and cancellation. Narrowband (NB) estimation may be performed in a receiver during handling of received radio frequency (RF) signals. The narrowband (NB) may include generating estimation channelization information relating to received RF signals; generating reference nonlinearity information relating to one or more other signals, which may cause or contribute to nonlinearity that affects the processing of the received RF signals; and generating, based on the estimation channelization information relating to the received RF signals and the reference nonlinearity information relating to the other signals, control data for configuring nonlinearity cancellation functions. The received RF signals may be channelized, and the estimation channelization information may be generated based on the channelization of the received RF signals.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: October 1, 2019
    Assignee: MAXLINEAR, INC.
    Inventors: Wen-Chi Tu, Stephane Laurent-Michel
  • Patent number: 10389404
    Abstract: Aspects of methods and systems for PAPR reduction in a microwave backhaul outdoor unit are provided.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: August 20, 2019
    Assignee: MAXLINEAR, INC.
    Inventors: Stephane Laurent-Michel, Raghuraman Mariappan
  • Patent number: 10305525
    Abstract: A first microwave backhaul assembly comprises a first antenna, a front-end circuit, an inter-backhaul-assembly interface circuit, and an interference cancellation circuit. The first antenna is operable to receive a first microwave signal. The front-end circuit is operable to convert the first microwave signal to a lower-frequency digital signal, wherein the lower-frequency digital signal has energy of a second microwave signal and energy of a third microwave signal. The inter-backhaul-assembly interface circuit is operable to receive information from a second microwave backhaul assembly. The interference cancellation circuit is operable to use the information received via the inter-backhaul-assembly interface circuit during processing of the lower-frequency digital signal to remove, from the first microwave signal, the energy of the third microwave signal. The information received via the inter-backhaul-assembly interface may comprise a signal having energy of the second microwave signal.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: May 28, 2019
    Assignee: Maxlinear, Inc.
    Inventors: Stephane Laurent-Michel, Curtis Ling
  • Publication number: 20190123772
    Abstract: Systems and methods are provided for receiver nonlinearity estimation and cancellation. Narrowband (NB) estimation may be performed in a receiver during handling of received radio frequency (RF) signals. The narrowband (NB) may include generating estimation channelization information relating to received RF signals; generating reference nonlinearity information relating to one or more other signals, which may cause or contribute to nonlinearity that affects the processing of the received RF signals; and generating, based on the estimation channelization information relating to the received RF signals and the reference nonlinearity information relating to the other signals, control data for configuring nonlinearity cancellation functions. The received RF signals may be channelized, and the estimation channelization information may be generated based on the channelization of the received RF signals.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 25, 2019
    Inventors: Wen-Chi Tu, Stephane Laurent-Michel
  • Publication number: 20190068227
    Abstract: A system comprises a microwave backhaul outdoor unit having a first resonant circuit, phase error determination circuitry, and phase error compensation circuitry. The first resonant circuit is operable to generate a first signal characterized by a first amount of phase noise and a first amount of temperature stability. The phase error determination circuitry is operable to generate a phase error signal indicative of phase error between the first signal and a second signal, wherein the second signal is characterized by a second amount of phase noise that is greater than the first amount of phase noise, and the second signal is characterized by a second amount of temperature instability that is less than the first amount of temperature instability. The phase error compensation circuitry is operable to adjust the phase of a data signal based on the phase error signal, the adjustment resulting in a phase compensated signal.
    Type: Application
    Filed: October 26, 2018
    Publication date: February 28, 2019
    Inventors: Subramanian Anantharaman Chandrasekarapuram, Anand Anandakumar, Stephane Laurent-Michel, Sheng Ye, Raja Pullela, Glenn Chang, Vamsi Paidi
  • Patent number: 10187096
    Abstract: A system comprises a microwave backhaul outdoor unit having a first resonant circuit, phase error determination circuitry, and phase error compensation circuitry. The first resonant circuit is operable to generate a first signal characterized by a first amount of phase noise and a first amount of temperature stability. The phase error determination circuitry is operable to generate a phase error signal indicative of phase error between the first signal and a second signal, wherein the second signal is characterized by a second amount of phase noise that is greater than the first amount of phase noise, and the second signal is characterized by a second amount of temperature instability that is less than the first amount of temperature instability. The phase error compensation circuitry is operable to adjust the phase of a data signal based on the phase error signal, the adjustment resulting in a phase compensated signal.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: January 22, 2019
    Assignee: Maxlinear, Inc.
    Inventors: Subramanian Anantharaman Chandrasekarapuram, Anand Anandakumar, Stephane Laurent-Michel, Sheng Ye, Raja Pullela, Glenn Chang, Vamsi Paidi
  • Patent number: 10164674
    Abstract: Systems and methods are provided for receiver nonlinearity estimation and cancellation. During processing of received radio frequency (RF) signals, it may be determined when one or more other signals, different from the received RF signals, cause nonlinearity affecting processing of the RF signals, and one or more cancellation adjustments may be applied during processing of the RF signals, for mitigating effects of the nonlinearity. Determining the one or more cancellation adjustments may be based on narrowband (NB) estimation of the effects of the nonlinearity, and the one or more cancellation adjustments may be configured as wideband (WB) corrections. The NB estimation may be applied based on channelization of the received RF signals. The NB estimation may comprise generating reference nonlinearity information relating to the one or more other signals, and generating, based on the reference nonlinearity information, control data for configuring the one or more cancellation adjustments.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: December 25, 2018
    Assignee: MAXLINEAR, INC.
    Inventors: Wen-Chi Tu, Stephane Laurent-Michel
  • Patent number: 10142142
    Abstract: A system comprises a modulator circuit, a test signal generator circuit, and a control circuit. The modulator circuit is operable to generate a data-carrying signal based on a reference signal. The test signal generator circuit is operable to generate a test signal based on the reference signal. The control circuit is operable to determine current status of a microwave backhaul link. The control circuit is operable to configure a nominal frequency at which the test signal generator circuit generates the test signal based on the determined status of the microwave backhaul link. The control circuit is operable to determine an amount of whitespace to have on either side of the test signal based on the current status of the microwave backhaul link. The control circuit is operable to configure the modulator circuit such that the data-carrying signal has the determined amount of whitespace surrounding the nominal frequency of the test signal.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: November 27, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Stephane Laurent-Michel, Curtis Ling
  • Publication number: 20180302119
    Abstract: Aspects of methods and systems for PAPR reduction in a microwave backhaul outdoor unit are provided.
    Type: Application
    Filed: March 13, 2018
    Publication date: October 18, 2018
    Inventors: Stephane Laurent-Michel, Raghuraman Mariappan
  • Publication number: 20180183473
    Abstract: A first microwave backhaul assembly comprises a first antenna, a front-end circuit, an inter-backhaul-assembly interface circuit, and an interference cancellation circuit. The first antenna is operable to receive a first microwave signal. The front-end circuit is operable to convert the first microwave signal to a lower-frequency digital signal, wherein the lower-frequency digital signal has energy of a second microwave signal and energy of a third microwave signal. The inter-backhaul-assembly interface circuit is operable to receive information from a second microwave backhaul assembly. The interference cancellation circuit is operable to use the information received via the inter-backhaul-assembly interface circuit during processing of the lower-frequency digital signal to remove, from the first microwave signal, the energy of the third microwave signal. The information received via the inter-backhaul-assembly interface may comprise a signal having energy of the second microwave signal.
    Type: Application
    Filed: February 23, 2018
    Publication date: June 28, 2018
    Inventors: Stephane Laurent-Michel, Curtis Ling
  • Patent number: 9960804
    Abstract: Noise caused by and leaking from a transmit signal into a radio-frequency (RF) receive path signal is reduced by forwarding the transmit signal to a first filter or a digital processor and DAC, scaling the transmit signal and approximating the noise, subtracting first and second corrective signals from the RF receive path signal, down-converting a resulting corrected RF receive path signal, filtering the down-converted corrected signal in a second filter, up-converting the filtered corrected signal to create the first corrective signal, and up-converting the filter or DAC output signal to create the second corrective signal. The transmit signal may come from an output of an RF power amplifier, and may be down-converted prior to filtering in the first filter or processing in the digital processor. The second filter may be a series filter or a shunt filter. A radio includes the circuits to perform the above method.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: May 1, 2018
    Inventors: Andrew Joo Kim, Stephane Laurent-Michel, Stephen Jantzi
  • Patent number: 9923585
    Abstract: A first microwave backhaul assembly comprises a first antenna, a front-end circuit, an inter-backhaul-assembly interface circuit, and an interference cancellation circuit. The first antenna is operable to receive a first microwave signal. The front-end circuit is operable to convert the first microwave signal to a lower-frequency digital signal, wherein the lower-frequency digital signal has energy of a second microwave signal and energy of a third microwave signal. The inter-backhaul-assembly interface circuit is operable to receive information from a second microwave backhaul assembly. The interference cancellation circuit is operable to use the information received via the inter-backhaul-assembly interface circuit during processing of the lower-frequency digital signal to remove, from the first microwave signal, the energy of the third microwave signal. The information received via the inter-backhaul-assembly interface may comprise a signal having energy of the second microwave signal.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: March 20, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Stephane Laurent-Michel, Curtis Ling
  • Patent number: 9917618
    Abstract: Aspects of methods and systems for PAPR reduction in a microwave backhaul outdoor unit are provided.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: March 13, 2018
    Assignee: MAXLINEAR, INC.
    Inventors: Stephane Laurent-Michel, Raghuraman Mariappan
  • Publication number: 20180026673
    Abstract: Noise caused by and leaking from a transmit signal into a radio-frequency (RF) receive path signal is reduced by forwarding the transmit signal to a first filter or a digital processor and DAC, scaling the transmit signal and approximating the noise, subtracting first and second corrective signals from the RF receive path signal, down-converting a resulting corrected RF receive path signal, filtering the down-converted corrected signal in a second filter, up-converting the filtered corrected signal to create the first corrective signal, and up-converting the filter or DAC output signal to create the second corrective signal. The transmit signal may come from an output of an RF power amplifier, and may be down-converted prior to filtering in the first filter or processing in the digital processor. The second filter may be a series filter or a shunt filter. A radio includes the circuits to perform the above method.
    Type: Application
    Filed: June 9, 2017
    Publication date: January 25, 2018
    Inventors: Andrew Joo Kim, Stephane Laurent-Michel, Stephen Jantzi
  • Publication number: 20170264325
    Abstract: A system comprises a microwave backhaul outdoor unit having a first resonant circuit, phase error determination circuitry, and phase error compensation circuitry. The first resonant circuit is operable to generate a first signal characterized by a first amount of phase noise and a first amount of temperature stability. The phase error determination circuitry is operable to generate a phase error signal indicative of phase error between the first signal and a second signal, wherein the second signal is characterized by a second amount of phase noise that is greater than the first amount of phase noise, and the second signal is characterized by a second amount of temperature instability that is less than the first amount of temperature instability. The phase error compensation circuitry is operable to adjust the phase of a data signal based on the phase error signal, the adjustment resulting in a phase compensated signal.
    Type: Application
    Filed: May 31, 2017
    Publication date: September 14, 2017
    Inventors: Subramanian Anantharaman Chandrasekarapuram, Anand Anandakumar, Stephane Laurent-Michel, Sheng Ye, Raja Pullela, Glenn Chang, Vamsi Paidi
  • Patent number: 9755691
    Abstract: A radio receiver processing path has a mixer with active interference/blocker cancellation to reduce the intensity of leaked and undesired signals by using a replica of the transmitted signal, emulating the phase and attenuation through the leakage path and subtracting the emulated signal within the mixer. Intermodulation distortions are predicted through the use of nonlinear modeling in the digital baseband between the baseband transmitter and baseband receiver and subsequently subtracted from the received signal. The nonlinear basis functions are combined to model the composite nonlinearity in the signal path based on digital baseband transmitted data. The modeled nonlinearity is subtracted from the received signal, and the result is observed and used to guide the nonlinear modeling parameters using self-contained control loops.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: September 5, 2017
    Inventors: Andrew Joo Kim, Stephane Laurent-Michel, Stephen Jantzi
  • Publication number: 20170207936
    Abstract: A system comprises a modulator circuit, a test signal generator circuit, and a control circuit. The modulator circuit is operable to generate a data-carrying signal based on a reference signal. The test signal generator circuit is operable to generate a test signal based on the reference signal. The control circuit is operable to determine current status of a microwave backhaul link. The control circuit is operable to configure a nominal frequency at which the test signal generator circuit generates the test signal based on the determined status of the microwave backhaul link. The control circuit is operable to determine an amount of whitespace to have on either side of the test signal based on the current status of the microwave backhaul link. The control circuit is operable to configure the modulator circuit such that the data-carrying signal has the determined amount of whitespace surrounding the nominal frequency of the test signal.
    Type: Application
    Filed: April 4, 2017
    Publication date: July 20, 2017
    Inventors: Stephane Laurent-Michel, Curtis Ling
  • Patent number: 9685983
    Abstract: A system comprises a microwave backhaul outdoor unit having a first resonant circuit, phase error determination circuitry, and phase error compensation circuitry. The first resonant circuit is operable to generate a first signal characterized by a first amount of phase noise and a first amount of temperature stability. The phase error determination circuitry is operable to generate a phase error signal indicative of phase error between the first signal and a second signal, wherein the second signal is characterized by a second amount of phase noise that is greater than the first amount of phase noise, and the second signal is characterized by a second amount of temperature instability that is less than the first amount of temperature instability. The phase error compensation circuitry is operable to adjust the phase of a data signal based on the phase error signal, the adjustment resulting in a phase compensated signal.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: June 20, 2017
    Assignee: Maxlinear, Inc.
    Inventors: Subramanian Anantharaman Chandrasekarapuram, Anand Anandakumar, Stephane Laurent-Michel, Sheng Ye, Raja Pullela, Glenn Chang, Vamsi Paidi