Patents by Inventor Stephane Leahy

Stephane Leahy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11792566
    Abstract: Microphones, microphone systems, and methods for capturing and processing sound are described. The microphones and microphone systems may adaptively change the direction from which sound is captured. The microphones and microphone systems avoid the need to provide arrays of microphones, while providing adaptive beamforming without a time delay between each channel of information, and multi-directional sound capture. A dependency between the frequency response and system size is also avoided.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: October 17, 2023
    Assignees: Soundskrit Inc., The Research Foundation for The State University of New York
    Inventors: Sahil Kumar Gupta, Stephane Leahy, Iman Moazzen, Ronald Miles, Jian Zhou
  • Publication number: 20230312335
    Abstract: A microelectromechanical system (MEMS) transducer includes a substrate and a pair of electrodes supported by the substrate. The pair of electrodes are configured as a bias electrode-sense electrode couple. A moveable electrode of the pair of electrodes is configured for vibrational movement in a first direction during excitation of the moveable electrode. The pair of electrodes are spaced apart from one another by a gap in a second direction perpendicular to the first direction. The moveable electrode includes a cantilevered end, the cantilevered end being warped to exhibit a resting deflection along the first direction.
    Type: Application
    Filed: May 23, 2023
    Publication date: October 5, 2023
    Inventors: Stephane Leahy, Wan-Thai Hsu, Mohsin Nawaz, Carly Stalder, Sahil Gupta, Meysam Daeichin
  • Publication number: 20230254635
    Abstract: An acoustic sensor device comprises a package and a substrate disposed in the package. The acoustic sensor device also comprises a microelectromechanical system (MEMS) transducer formed in the substrate, the MEMS transducer i) comprising a cantilever structure and ii) having a first acoustic impedance and at least two sound ports positioned on the package on opposing sides of the MEMS transducer. The at least two sound ports coupling the MEMS transducer to an ambient environment via respective acoustic channels formed in the package, wherein the at least two sound ports are positioned on the package in a manner that ensures that the respective acoustic channels have a combined second acoustic impendence that is less the first acoustic impedance of the MEMS transducer.
    Type: Application
    Filed: February 6, 2023
    Publication date: August 10, 2023
    Inventors: Stephane Leahy, Wan-Thai Hsu, Sahil Gupta
  • Patent number: 11697582
    Abstract: A microelectromechanical system (MEMS) transducer includes a substrate and a pair of electrodes supported by the substrate. The pair of electrodes are configured as a bias electrode-sense electrode couple. A moveable electrode of the pair of electrodes is configured for vibrational movement in a first direction during excitation of the moveable electrode. The pair of electrodes are spaced apart from one another by a gap in a second direction perpendicular to the first direction. The moveable electrode includes a cantilevered end, the cantilevered end being warped to exhibit a resting deflection along the first direction.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: July 11, 2023
    Assignee: Soundskrit Inc.
    Inventors: Stephane Leahy, Wan-Thai Hsu, Mohsin Nawaz, Carly Stalder, Sahil Gupta, Meysam Daeichin
  • Publication number: 20230097786
    Abstract: A device includes a housing, an acoustic sensor disposed within the housing, the acoustic sensor comprising a microelectrornechanical (MEMS) transducer, a first port in the housing establishing a first acoustic path for air flow to the MEMS transducer, and a second port in the housing establishing a second acoustic path for air flow to the MEMS transducer. The first and second acoustic paths have an equal path length.
    Type: Application
    Filed: March 8, 2021
    Publication date: March 30, 2023
    Inventors: Stephane Leahy, Sahil Gupta, Wan-Thai Hsu, Frederic Lepoutre
  • Publication number: 20220396470
    Abstract: A microelectromechanical system (MEMS) transducer includes a substrate and a pair of electrodes supported by the substrate. The pair of electrodes are configured as a bias electrode-sense electrode couple. A moveable electrode of the pair of electrodes is configured for vibrational movement in a first direction during excitation of the moveable electrode. The pair of electrodes are spaced apart from one another by a gap in a second direction perpendicular to the first direction. The moveable electrode includes a cantilevered end, the cantilevered end being warped to exhibit a resting deflection along the first direction.
    Type: Application
    Filed: June 14, 2022
    Publication date: December 15, 2022
    Inventors: Stephane Leahy, Wan-Thai Hsu, Mohsin Nawaz, Carly Stalder, Sahil Gupta, Meysam Daeichin
  • Publication number: 20220218202
    Abstract: A device for non-invasive monitoring and measuring of intraocular pressure (IOP) of a subject includes a flexible lens that fits on the eye and changes curvature in response to a change in curvature of the eye. A microchannel disposed in or on the lens has one or more ends that are open to the atmosphere and an indicator solution is disposed in a portion of the 5 microchannel. The microchannel exhibits a change in volume in response to a change in curvature of the lens, which results in a change in position of the indicator solution in the microchannel. The change in position of the indicator solution in the microchannel is indicative of a change in IOP. The change in position of the indicator solution may be detected in digital images of the lens taken with a camera of a mobile electronic device such 0 as a smartphone or a camera worn by the subject.
    Type: Application
    Filed: May 29, 2020
    Publication date: July 14, 2022
    Inventors: Angelica Campigotto, Yong Jun Lai, Robert J. Campbell, Stephane Leahy
  • Publication number: 20210331912
    Abstract: An electrostatic transducer includes a substrate oriented in a plane, a fixed electrode supported by the substrate, and a moveable electrode supported by the substrate, spaced from the fixed electrode in a first direction parallel to the plane, and configured for movement in a second direction transverse to the plane, such that an extent to which the fixed and moveable electrodes overlap changes during the movement. The fixed and moveable electrodes comprise one or more of a plurality of conductive layers, the plurality of conductive layers including at least three layers. The fixed electrode includes a stacked arrangement of two or more spaced apart conductive layers of the plurality of conductive layers.
    Type: Application
    Filed: April 22, 2021
    Publication date: October 28, 2021
    Inventors: Wan-Thai Hsu, Hoyoun Jang, Stephane Leahy, Bruce Diamond, Sahil Gupta
  • Publication number: 20200336826
    Abstract: Microphones, microphone systems, and methods for capturing and processing sound are described. The microphones and microphone systems may adaptively change the direction from which sound is captured. The microphones and microphone systems avoid the need to provide arrays of microphones, while providing adaptive beamforming without a time delay between each channel of information, and multi-directional sound capture. A dependency between the frequency response and system size is also avoided.
    Type: Application
    Filed: January 4, 2019
    Publication date: October 22, 2020
    Inventors: Sahil Kumar Gupta, Stephane Leahy, Iman Moazzen, Ronald Miles, Jian Zhou