Patents by Inventor Stephanie J. Chiu

Stephanie J. Chiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10366492
    Abstract: Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: July 30, 2019
    Assignee: Duke University
    Inventors: Sina Farsiu, Stephanie J. Chiu, Cynthia A. Toth, Joseph A. Izatt, Xiao T. Li, Peter Christopher Nicholas
  • Patent number: 9940722
    Abstract: Segmentation and identification of closed-contour features in images using graph theory and quasi-polar transform are disclosed. According to an aspect, a method includes representing, in a rectangular domain, an image including a feature of interest. Further, the method includes determining a point within the feature of interest. The method also includes transforming the image of the feature from the rectangular domain to a quasi-polar domain based on the point. The quasi-polar domain is represented as a graph of nodes connected together by edges. The method also includes graph cutting the quasi-polar domain to identify the boundary of the feature of interest in the image.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: April 10, 2018
    Assignee: Duke University
    Inventors: Sina Farsiu, Stephanie J. Chiu, Joseph A. Izatt
  • Publication number: 20170140544
    Abstract: Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
    Type: Application
    Filed: January 31, 2017
    Publication date: May 18, 2017
    Inventors: Sina Farsiu, Stephanie J. Chiu, Cynthia A. Toth, Joseph A. Izatt, Xiao T. Li, Peter Christopher Nicholas
  • Patent number: 9589346
    Abstract: Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
    Type: Grant
    Filed: February 21, 2016
    Date of Patent: March 7, 2017
    Assignee: Duke University
    Inventors: Sina Farsiu, Stephanie J. Chiu, Cynthia A. Toth, Josheph A. Izatt, Xiao T. Li, Peter Christopher Nicholas
  • Publication number: 20160171688
    Abstract: Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
    Type: Application
    Filed: February 21, 2016
    Publication date: June 16, 2016
    Inventors: Sina Farsiu, Stephanie J. Chiu, Cynthia A. Toth, Josheph A. Izatt, Xiao T. Li, Peter Christopher Nicholas
  • Patent number: 9299155
    Abstract: Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: March 29, 2016
    Assignee: Duke University
    Inventors: Sina Farsiu, Stephanie J. Chiu, Cynthia A. Toth, Joseph A. Izatt, Xiao T. Li, Peter Christopher Nicholas
  • Publication number: 20150371400
    Abstract: Segmentation and identification of closed-contour features in images using graph theory and quasi-polar transform are disclosed. According to an aspect, a method includes representing, in a rectangular domain, an image including a feature of interest. Further, the method includes determining a point within the feature of interest. The method also includes transforming the image of the feature from the rectangular domain to a quasi-polar domain based on the point. The quasi-polar domain is represented as a graph of nodes connected together by edges. The method also includes graph cutting the quasi-polar domain to identify the boundary of the feature of interest in the image.
    Type: Application
    Filed: January 27, 2014
    Publication date: December 24, 2015
    Inventors: Sina Farsiu, Stephanie J. Chiu, Joseph A. Izatt
  • Publication number: 20150342460
    Abstract: Imaging and visualization systems, instruments, and methods using optical coherence tomography (OCT) are disclosed. A method for OCT image capture includes determining a location of a feature of interest within an operative field. The method also includes determining a relative positioning between the feature of interest and an OCT scan location. Further, the method includes controlling capture of an OCT image at a set position relative to the feature of interest based on the relative positioning.
    Type: Application
    Filed: August 11, 2015
    Publication date: December 3, 2015
    Inventors: Joseph A. Izatt, Cynthia A. Toth, Sina Farsiu, Paul V. Hahn, Yuankai K. Tao, Justis P. Ehlers, Justin V. Migacz, Stephanie J. Chiu
  • Publication number: 20140334703
    Abstract: Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 13, 2014
    Inventors: Sina Farsiu, Stephanie J. Chiu, Cynthia A. Toth, Joseph A. Izatt, Xiao T. Li, Peter Christopher Nicholas
  • Patent number: 8811745
    Abstract: Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: August 19, 2014
    Assignee: Duke University
    Inventors: Sina Farsiu, Stephanie J. Chiu, Cynthia A. Toth, Joseph A. Izatt, Xiao T. Li, Peter Christopher Nicholas
  • Publication number: 20120184846
    Abstract: Imaging and visualization systems, instruments, and methods using optical coherence tomography (OCT) are disclosed. A method for OCT image capture includes determining a location of a feature of interest within an operative field. The method also includes determining a relative positioning between the feature of interest and an OCT scan location. Further, the method includes controlling capture of an OCT image at a set position relative to the feature of interest based on the relative positioning.
    Type: Application
    Filed: January 19, 2012
    Publication date: July 19, 2012
    Applicant: DUKE UNIVERSITY
    Inventors: Joseph A. Izatt, Cynthia A. Toth, Sina Farsiu, Paul Hahn, Yuankai K. Tao, Justis P. Ehlers, Justin V. Migacz, Stephanie J. Chiu
  • Publication number: 20110182517
    Abstract: Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
    Type: Application
    Filed: January 20, 2011
    Publication date: July 28, 2011
    Applicant: DUKE UNIVERSITY
    Inventors: Sina Farsiu, Stephanie J. Chiu, Cynthia A. Toth, Joseph A. Izatt, Xiao T. Li, Peter Christopher Nicholas