Patents by Inventor Stephanie Jaegli
Stephanie Jaegli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12162842Abstract: A process for the conversion of glycolaldehyde with an aminating agent in the presence of hydrogen and of a catalyst in a glycolaldehyde conversion reactor, wherein one or more organic carboxylic acids are fed into the glycolaldehyde conversion reactor.Type: GrantFiled: June 2, 2020Date of Patent: December 10, 2024Assignee: BASF SEInventors: Martin Ernst, Tatjana Huber, Johann-Peter Melder, Stephanie Jaegli, Thomas Krug
-
Publication number: 20220259139Abstract: A process for the conversion of glycolaldehyde with an aminating agent in the presence of hydrogen and of a catalyst in a glycolaldehyde conversion reactor, wherein one or more organic carboxylic acids are fed into the glycolaldehyde conversion reactor.Type: ApplicationFiled: June 2, 2020Publication date: August 18, 2022Inventors: Martin ERNST, Tatjana HUBER, Johann-Peter MELDER, Stephanie JAEGLI, Thomas KRUG
-
Publication number: 20220235015Abstract: A process for the manufacture of ethyleneamines and ethanolamines, comprising the steps of (i) converting a glycolaldehyde derivative of formula (II), in which R2, R3 are—the same or different—hydrogen, alkyl, such as C1-6-alkyl, or cycloalkyl such as Cs-e-cycloalkyl; and an animating agent of formula (III); in which R1 is hydrogen (H), alkyl, such as C1-6-alkyl, or cycloalkyl such as C3-6-cycloalkyl, in the gas or liquid phase; (ii) feeding the reaction products obtained in step (i) into a hydrogenation reactor, where the reaction products are converted with hydrogen in the presence of a hydrogenation catalyst.Type: ApplicationFiled: June 2, 2020Publication date: July 28, 2022Inventors: Martin ERNST, Tatjana HUBER, Johann-Peter MELDER, Stephanie JAEGLI, Thomas KRUG
-
Publication number: 20220234991Abstract: A process for the conversion of glycolaldehyde with an aminating agent in the presence of hy-5 drogen and of a catalyst, wherein the conversion is carried out in the gas phase.Type: ApplicationFiled: June 2, 2020Publication date: July 28, 2022Inventors: Tatjana HUBER, Martin ERNST, Johann-Peter MELDER, Stephanie JAEGLI, Thomas KRUG
-
Patent number: 10995057Abstract: The present invention relates to a process for hydrogenating nitriles with hydrogen in the presence of a ZrO2-supported ruthenium catalyst.Type: GrantFiled: September 1, 2017Date of Patent: May 4, 2021Assignee: BASF SEInventors: Christian Eidamshaus, Thomas Krug, Johann-Peter Melder, Joerg Pastre, Regine Helga Bebensee, Stephanie Jaegli
-
Publication number: 20200317603Abstract: A process for stabilizing monoalkyl-substituted diaminocyclohexanes, the process containing: adding a reductant and optionally water to a first composition containing a monoalkyl-substituted diaminocyclohexane and optionally water to obtain a second composition, wherein the second composition contains the reductant, the monoalkyl-substituted diaminocyclohexane and additionally at least 0.05% by weight of water based on the total weight of the second composition.Type: ApplicationFiled: November 27, 2017Publication date: October 8, 2020Inventors: Stephanie JAEGLI, Martin ERNST, Alexander PANCHENKO, Frank HETTCHE, Bjoern LUDOLPH
-
Publication number: 20190169112Abstract: The present invention relates to a process for hydrogenating nitriles with hydrogen in the presence of a ZrO2-supported ruthenium catalyst.Type: ApplicationFiled: September 1, 2017Publication date: June 6, 2019Applicant: BASF SEInventors: Christian EIDAMSHAUS, Thomas KRUG, Johann-Peter MELDER, Joerg PASTRE, Regine Helga BEBENSEE, Stephanie JAEGLI
-
Patent number: 9914693Abstract: The present invention relates to a process for preparing ethylenediamine (EDA), where the process comprises the steps a) to c). In step a), formaldehyde is reacted with hydrocyanic acid (HCN) to form formaldehyde cyanohydrin (FACH), where the hydrocyanic acid is completely free or largely free of sulfur dioxide (SO2). The FACH prepared in this way is reacted with ammonia (NH3) to form aminoacetonitrile (AAN) in step b), whereupon a hydrogenation of AAN in the presence of a catalyst to form EDA is carried out in step c).Type: GrantFiled: February 12, 2014Date of Patent: March 13, 2018Assignee: BASF SEInventors: Hermann Luyken, Stephanie Jaegli, Michael Lorenz, Gordon Brasche, Markus Jegelka, Barbara Becker, Robert Baumann, Johann-Peter Melder, Boris Buschhaus, Thomas Krug
-
Patent number: 9828329Abstract: The present invention relates to a process for purifying ethylenediamine (EDA) by distillation, wherein the process comprises the steps a) and b). In step a), a mixture (G1) comprising water, EDA and N-methylethylenediamine (N-MeEDA) is fed into a distillation apparatus (D1), and the major part of the water comprised in the mixture (G1) is separated off overhead at a pressure of greater than 4.8 bara. From the bottom of (D1), the water-enriched mixture (G2) is fed into a distillation apparatus (D2) in step b). At the top of (D2), the major part of the N-MeEDA is distilled off. The stream (S3) obtained from the bottom of (D2) comprises EDA, with the components water and N-MeEDA comprised in the mixture (G1) having been largely or completely removed. Further distillation steps can optionally be carried out in order to obtain pure EDA, for example when diethylenetriamine (DETA) is additionally comprised in the mixture (G1).Type: GrantFiled: March 11, 2015Date of Patent: November 28, 2017Assignee: BASF SEInventors: Hermann Luyken, Stephanie Jaegli, Michael Lorenz, Gordon Brasche, Markus Jegelka, Barbara Becker, Robert Baumann, Johann-Peter Melder, Boris Buschhaus, Thomas Krug
-
Publication number: 20170217874Abstract: The present invention relates to a process for purifying ethylenediamine (EDA) by distillation, wherein the process comprises the steps a) and b). In step a), a mixture (G1) comprising water, EDA and N-methylethylenediamine (N-MeEDA) is fed into a distillation apparatus (D1), and the major part of the water comprised in the mixture (G1) is separated off overhead at a pressure of greater than 4.8 bara. From the bottom of (D1), the water-enriched mixture (G2) is fed into a distillation apparatus (D2) in step b). At the top of (D2), the major part of the N-MeEDA is distilled off. The stream (S3) obtained from the bottom of (D2) comprises EDA, with the components water and N-MeEDA comprised in the mixture (G1) having been largely or completely removed. Further distillation steps can optionally be carried out in order to obtain pure EDA, for example when diethylenetriamine (DETA) is additionally comprised in the mixture (G1).Type: ApplicationFiled: March 11, 2015Publication date: August 3, 2017Applicant: BASF SEInventors: Hermann LUYKEN, Stephanie JAEGLI, Michael LORENZ, Gordon BRASCHE, Markus JEGELKA, Barbara BECKER, Robert BAUMANN, Johann-Peter MELDER, Boris BUSCHHAUS, Thomas KRUG
-
Patent number: 9695121Abstract: The present invention relates to 2,6-bis(aminomethyl)piperidine derivatives as such (in the following text abbreviated to “2,6-BAMP derivatives”) which are defined by the general formula (I) shown in the following text. In addition, the present invention relates to a process for preparing such 2,6-BAMP derivatives by hydrogenation of the corresponding 2,6-dicyanopiperidine derivatives (hereinafter abbreviated to “2,6-DCP derivatives”) in the presence of a catalyst. The present invention further provides for the use of the 2,6-BAMP derivatives of the invention as hardeners for epoxy resins, as intermediate in the preparation of diisocyanates, which play an important role in the production of polyurethanes, as starters in the preparation of polyetherols and/or as monomers for polyamide production. The present invention further relates to the diisocyanates as such prepared from the 2,6-BAMP derivatives and also the corresponding preparative process.Type: GrantFiled: January 27, 2014Date of Patent: July 4, 2017Assignee: BASF SEInventors: Stephanie Jaegli, Thomas Schmidt, Alfred Oftring, Alexander Panchenko, Kirsten Dahmen, Oliver Molt
-
Publication number: 20160304445Abstract: The present invention relates to 2-N,N-(bis-2-aminoalkyl)-1,2-alkyldiamine derivatives of formula (I) as such, to a process for preparing the 2-N,N-(bis-2-aminoalkyl)-1,2-alkyldiamine derivatives, to the use of the 2-N,N-(bis-2-aminoalkyl)-1,2-alkyldiamine derivatives as hardeners for epoxy resins, as an intermediate in the preparation of triisocyanates, as initiators for polyetherols and/or as monomers for the preparation of polyamides, to triisocyanates derived from the 2-N,N-(bis-2-aminoalkyl)-1,2-alkyldiamine derivatives of formula (I) and also to a process for preparing these triisocyanates.Type: ApplicationFiled: November 21, 2014Publication date: October 20, 2016Applicant: BASF SEInventors: Stephanie JAEGLI, Monika CHARRAK, Alexander PANCHENKO, Thomas SCHMIDT, Johann-Peter MELDER
-
Publication number: 20160009633Abstract: The present invention relates to a process for preparing ethylenediamine (EDA), where the process comprises the steps a) to c). In step a), formaldehyde is reacted with hydrocyanic acid (HCN) to form formaldehyde cyanohydrin (FACH), where the hydrocyanic acid is completely free or largely free of sulfur dioxide (SO2). The FACH prepared in this way is reacted with ammonia (NH3) to form aminoacetonitrile (AAN) in step b), whereupon a hydrogenation of AAN in the presence of a catalyst to form EDA is carried out in step c).Type: ApplicationFiled: February 12, 2014Publication date: January 14, 2016Inventors: Hermann LUYKEN, Stephanie JAEGLI, Michael LORENZ, Gordon BRASCHE, Markus JEGELKA, Barbara BECKER, Robert BAUMANN, Johann-Peter MELDER, Boris BUSCHHAUS, Thomas KRUG
-
Publication number: 20150353491Abstract: The present invention relates to 2,6-bis(aminomethyl)piperidine derivatives as such (in the following text abbreviated to “2,6-BAMP derivatives”) which are defined by the general formula (I) shown in the following text. In addition, the present invention relates to a process for preparing such 2,6-BAMP derivatives by hydrogenation of the corresponding 2,6-dicyanopiperidine derivatives (hereinafter abbreviated to “2,6-DCP derivatives”) in the presence of a catalyst. The present invention further provides for the use of the 2,6-BAMP derivatives of the invention as hardeners for epoxy resins, as intermediate in the preparation of diisocyanates, which play an important role in the production of polyurethanes, as starters in the preparation of polyetherols and/or as monomers for polyamide production. The present invention further relates to the diisocyanates as such prepared from the 2,6-BAMP derivatives and also the corresponding preparative process.Type: ApplicationFiled: January 27, 2014Publication date: December 10, 2015Applicant: BASF SEInventors: Stephanie JAEGLI, Thomas SCHMIDT, Alfred OFTRING, Alexander PANCHENKO, Kirsten DAHMEN, Oliver MOLT
-
Patent number: 9096497Abstract: A process for preparing EDDN and/or EDMN by conversion of FA, HCN and EDA, the reaction being effected in the presence of water, and, after the conversion, water being depleted from the reaction mixture in a distillation column, which comprises performing the distillation in the presence of an organic solvent which has a boiling point between water and EDDN and/or EDMN at the distillation pressure existing in the column or which forms a low-boiling azeotrope with water.Type: GrantFiled: August 30, 2012Date of Patent: August 4, 2015Assignee: BASF SEInventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
-
Patent number: 9012638Abstract: A process for reacting formaldehyde cyanohydrin (FACH) with ethylenediamine (EDA) in a reactor with limited backmixing at a temperature in the range from 20 to 120° C., wherein the residence time in the reactor is 300 seconds or less.Type: GrantFiled: August 30, 2012Date of Patent: April 21, 2015Assignee: BASF SEInventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
-
Patent number: 8952156Abstract: A process is disclosed for separating the output from the reaction of EDDN or EDMN with hydrogen in the presence of THF, a catalyst, TETA or DETA, water, and optionally organic compounds having higher and lower boiling points than TETA or DETA. Hydrogen is removed, and the output is supplied to a distillation column DK1 in which an azeotrope, optionally comprising organic compounds with a boiling point lower than TETA or DETA, is removed from the top. A product comprising TETA or DETA is removed from the bottom and passed into a distillation column DK2, removing THF. A stream comprising TETA or DETA passes from the bottom of DK2. The DK1 azeotrope is condensed. Phase separation is induced by the addition of an organic solvent essentially immiscible with water, and the mixture is separated. The organic phase is recycled into DK1 and the water phase is discharged.Type: GrantFiled: August 30, 2012Date of Patent: February 10, 2015Assignee: BASF SEInventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
-
Patent number: 8946459Abstract: A process for reacting ethylenediamine-formaldehyde adduct (EDFA) and/or ethylene-diamine-monoformaldehyde adduct (EDMFA) with hydrogen cyanide (HCN) in a reactor with limited backmixing at a temperature in the range from 20 to 120° C., wherein the residence time in the reactor is 300 seconds or less.Type: GrantFiled: August 30, 2012Date of Patent: February 3, 2015Assignee: BASF SEInventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
-
Publication number: 20130090452Abstract: A process for reacting formaldehyde cyanohydrin (FACH) with ethylenediamine (EDA) in a reactor with limited backmixing at a temperature in the range from 20 to 120° C., wherein the residence time in the reactor is 300 seconds or less.Type: ApplicationFiled: August 30, 2012Publication date: April 11, 2013Applicant: BASF SEInventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
-
Publication number: 20130090453Abstract: A process for preparing TETA and/or DETA by hydrogenating EDDN and/or EDMN with hydrogen in the presence of a catalyst, which comprises preparing EDDN and/or EDMN from FA, HCN and EDA in the presence of toluene as a solvent and performing the hydrogenation in suspension mode in the presence of THF.Type: ApplicationFiled: August 31, 2012Publication date: April 11, 2013Applicant: BASF SEInventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jõrg Pastre, Boris Buschhaus