Patents by Inventor Stephanie Jeanne OBERG

Stephanie Jeanne OBERG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12197676
    Abstract: The disclosed subject matter provides structures, devices, and methods for environmental compensation of temperature and humidity impacts on resistive force or touch sensor devices. Accordingly, various disclosed embodiments can be configured to determine sheet resistance of a device comprising force-sensing membrane and to apply an environmental compensation factor based on the sheet resistance. Further disclosed embodiments are directed to devices, systems and methods associated with disclosed environmental compensating elements and methods related thereto.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: January 14, 2025
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, Stephanie Jeanne Oberg, Scott Gregory Isaacson, Elliott Chen Wu, Darren Lochun, Alexander Meagher Grau, Jacob Terracina
  • Patent number: 12056322
    Abstract: The present invention relates to touch-sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for force-aware interaction with handheld display devices on one or more surfaces of the device. An exemplary embodiment includes a method for receiving a flexing gesture formed on a sensor panel of the handheld device including determining two or more pressure inputs at the sensor panel and determining a relative pressure between the two or more pressure inputs. The method further includes correlating the relative pressure inputs to the flexing gesture, associating the flexing gesture with a UI element and providing an input to the UI element based on the gesture and the relative pressure between the two or more pressure inputs.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: August 6, 2024
    Assignee: SENSEL, INC.
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20230376138
    Abstract: The present invention relates to automotive interface systems and methods. In one embodiment, an automotive interface system includes a steering wheel and an integrated interpolated variable impedance array that comprises a grid of sensing elements. The sensing elements are configured to power on simultaneously and to simultaneously generate multiple currents along multiple current paths in response to sensing a touch wherein the amount of current generated by a sensing element of the grid is directly proportional to the force applied by the touch. The automotive interface system also includes an analog-to-digital converter (ADC) and a processor communicatively coupled to the interpolated variable impedance array that are configured to receive the multiple currents along multiple current paths and determine a location, a duration, an area, and a force of the touch from the multiple currents along multiple current paths.
    Type: Application
    Filed: August 4, 2023
    Publication date: November 23, 2023
    Inventors: Alexander Meagher Grau, Bethany Noel Haniger, Mark Joshua Rosenberg, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich
  • Patent number: 11740722
    Abstract: The present invention relates to automotive interface systems and methods. In one embodiment, an automotive interface system includes a steering wheel and an integrated interpolated variable impedance array that comprises a grid of sensing elements. The sensing elements are configured to power on simultaneously and to simultaneously generate multiple currents along multiple current paths in response to sensing a touch wherein the amount of current generated by a sensing element of the grid is directly proportional to the force applied by the touch. The automotive interface system also includes an analog-to-digital converter (ADC) and a processor communicatively coupled to the interpolated variable impedance array that are configured to receive the multiple currents along multiple current paths and determine a location, a duration, an area, and a force of the touch from the multiple currents along multiple current paths.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: August 29, 2023
    Assignee: Sensel, Inc.
    Inventors: Alexander Meagher Grau, Bethany Noel Haniger, Mark Joshua Rosenberg, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich
  • Patent number: 11656718
    Abstract: The present invention relates to interpolated variable impedance touch sensor arrays for force-aware large-surface device interaction. An exemplary system for detecting a continuous pressure curve includes a plurality of physical variable impedance array (VIA) columns connected by interlinked impedance columns and a plurality of physical VIA rows connected by interlinked impedance rows. The system also includes a plurality of column drive sources connected to the interlinked impedance columns and to the plurality of physical VIA columns through the interlinked impedance columns as well as a plurality of row sense sinks connected to the interlinked impedance rows and to the plurality of physical VIA rows through the interlinked impedance rows. Further, the system includes a processor configured to interpolate the continuous pressure curve in the physical VIA columns and physical VIA rows from an electrical signal from the plurality of column drive sources sensed at the plurality of row sense sinks.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: May 23, 2023
    Assignee: SENSEL, INC.
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Patent number: 11614820
    Abstract: The present invention relates to touch sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for gesture recognition and associating a UI element with the recognized gesture. In one embodiment, the present invention provides a variable impedance array (VIA) system for receiving a gesture that includes: a plurality of physical VIA columns connected by interlinked impedance columns; a plurality of physical VIA rows connected by interlinked impedance rows; and a processor configured to interpolate a location and/or pressure of the gesture in the physical columns and rows from an electrical signal from a plurality of column drive sources (connected to the plurality of physical VIA columns through the interlinked impedance columns) sensed at a plurality of row sense sinks (connected to the plurality of physical VIA rows through the interlinked impedance rows).
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: March 28, 2023
    Assignee: Sensel, Inc.
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20230075139
    Abstract: The present invention relates to touch-sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for force-aware interaction with handheld display devices on one or more surfaces of the device. An exemplary embodiment includes a method for receiving a flexing gesture formed on a sensor panel of the handheld device including determining two or more pressure inputs at the sensor panel and determining a relative pressure between the two or more pressure inputs. The method further includes correlating the relative pressure inputs to the flexing gesture, associating the flexing gesture with a UI element and providing an input to the UI element based on the gesture and the relative pressure between the two or more pressure inputs.
    Type: Application
    Filed: November 14, 2022
    Publication date: March 9, 2023
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Patent number: 11513648
    Abstract: The present invention relates to touch-sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for force-aware interaction with handheld display devices on one or more surfaces of the device. An exemplary embodiment includes a method for receiving a flexing gesture formed on a sensor panel of the handheld device including determining two or more pressure inputs at the sensor panel and determining a relative pressure between the two or more pressure inputs. The method further includes correlating the relative pressure inputs to the flexing gesture, associating the flexing gesture with a UI element and providing an input to the UI element based on the gesture and the relative pressure between the two or more pressure inputs.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: November 29, 2022
    Assignee: Sensel, Inc.
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20220283663
    Abstract: The present invention relates to automotive interface systems and methods. In one embodiment, an automotive interface system includes a steering wheel and an integrated interpolated variable impedance array that comprises a grid of sensing elements. The sensing elements are configured to power on simultaneously and to simultaneously generate multiple currents along multiple current paths in response to sensing a touch wherein the amount of current generated by a sensing element of the grid is directly proportional to the force applied by the touch. The automotive interface system also includes an analog-to-digital converter (ADC) and a processor communicatively coupled to the interpolated variable impedance array that are configured to receive the multiple currents along multiple current paths and determine a location, a duration, an area, and a force of the touch from the multiple currents along multiple current paths.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Inventors: Alexander Meagher Grau, Bethany Noel Haniger, Mark Joshua Rosenberg, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich
  • Publication number: 20220244828
    Abstract: The present invention relates to touch sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for gesture recognition and associating a UI element with the recognized gesture. In one embodiment, the present invention provides a variable impedance array (VIA) system for receiving a gesture that includes: a plurality of physical VIA columns connected by interlinked impedance columns; a plurality of physical VIA rows connected by interlinked impedance rows; and a processor configured to interpolate a location and/or pressure of the gesture in the physical columns and rows from an electrical signal from a plurality of column drive sources (connected to the plurality of physical VIA columns through the interlinked impedance columns) sensed at a plurality of row sense sinks (connected to the plurality of physical VIA rows through the interlinked impedance rows).
    Type: Application
    Filed: April 25, 2022
    Publication date: August 4, 2022
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Patent number: 11353983
    Abstract: The present invention relates to touch sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for gesture recognition and associating a UI element with the recognized gesture. In one embodiment, the present invention provides a variable impedance array (VIA) system for receiving a gesture that includes: a plurality of physical VIA columns connected by interlinked impedance columns; a plurality of physical VIA rows connected by interlinked impedance rows; and a processor configured to interpolate a location and/or pressure of the gesture in the physical columns and rows from an electrical signal from a plurality of column drive sources (connected to the plurality of physical VIA columns through the interlinked impedance columns) sensed at a plurality of row sense sinks (connected to the plurality of physical VIA rows through the interlinked impedance rows).
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: June 7, 2022
    Assignee: Sensel, Inc.
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Patent number: 11353979
    Abstract: The present invention relates to automotive interface systems and methods. In one embodiment, an automotive interface system includes a steering wheel and an integrated interpolated variable impedance array that comprises a grid of sensing elements. The sensing elements are configured to power on simultaneously and to simultaneously generate multiple currents along multiple current paths in response to sensing a touch wherein the amount of current generated by a sensing element of the grid is directly proportional to the force applied by the touch. The automotive interface system also includes an analog-to-digital converter (ADC) and a processor communicatively coupled to the interpolated variable impedance array that are configured to receive the multiple currents along multiple current paths and determine a location, a duration, an area, and a force of the touch from the multiple currents along multiple current paths.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: June 7, 2022
    Assignee: Sensel, Inc.
    Inventors: Alexander Meagher Grau, Bethany Noel Haniger, Mark Joshua Rosenberg, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich
  • Publication number: 20220137744
    Abstract: The disclosed subject matter provides structures, devices, and methods for environmental compensation of temperature and humidity impacts on resistive force or touch sensor devices. Accordingly, various disclosed embodiments can be configured to determine sheet resistance of a device comprising force-sensing membrane and to apply an environmental compensation factor based on the sheet resistance. Further disclosed embodiments are directed to devices, systems and methods associated with disclosed environmental compensating elements and methods related thereto.
    Type: Application
    Filed: October 1, 2021
    Publication date: May 5, 2022
    Inventors: Ilya Daniel ROSENBERG, Stephanie Jeanne OBERG, Scott Gregory ISAACSON, Elliott Chen Wu, Darren Lochun, Alexander Meagher Grau, Jacob Terracina
  • Patent number: 11194415
    Abstract: The present invention relates to touch sensor systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for indirect force-aware touch control. An exemplary method for receiving an adjustment gesture formed on or about a plurality of sensor panels on a plurality of faces of a device includes detecting two or more touches at a first time at the plurality of sensor panels and determining that the touches at the first time are arranged in a pattern corresponding to a predetermined gesture. The method further includes determining a relative pressure between the touches, associating the gesture with a user interface element (that accepts an adjustment input based on the relative pressure between the two or more touches) and providing an input to the user interface element based on the gesture and relative pressure between the touches.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: December 7, 2021
    Assignee: Sensel, Inc.
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20210240296
    Abstract: The present invention relates to interpolated variable impedance touch sensor arrays for force-aware large-surface device interaction. An exemplary system for detecting a continuous pressure curve includes a plurality of physical variable impedance array (VIA) columns connected by interlinked impedance columns and a plurality of physical VIA rows connected by interlinked impedance rows. The system also includes a plurality of column drive sources connected to the interlinked impedance columns and to the plurality of physical VIA columns through the interlinked impedance columns as well as a plurality of row sense sinks connected to the interlinked impedance rows and to the plurality of physical VIA rows through the interlinked impedance rows. Further, the system includes a processor configured to interpolate the continuous pressure curve in the physical VIA columns and physical VIA rows from an electrical signal from the plurality of column drive sources sensed at the plurality of row sense sinks.
    Type: Application
    Filed: April 22, 2021
    Publication date: August 5, 2021
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20210223901
    Abstract: The present invention relates to automotive interface systems and methods. In one embodiment, an automotive interface system includes a steering wheel and an integrated interpolated variable impedance array that comprises a grid of sensing elements. The sensing elements are configured to power on simultaneously and to simultaneously generate multiple currents along multiple current paths in response to sensing a touch wherein the amount of current generated by a sensing element of the grid is directly proportional to the force applied by the touch. The automotive interface system also includes an analog-to-digital converter (ADC) and a processor communicatively coupled to the interpolated variable impedance array that are configured to receive the multiple currents along multiple current paths and determine a location, a duration, an area, and a force of the touch from the multiple currents along multiple current paths.
    Type: Application
    Filed: April 9, 2021
    Publication date: July 22, 2021
    Inventors: Alexander Meagher Grau, Bethany Noel Haniger, Mark Joshua Rosenberg, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich
  • Patent number: 11003274
    Abstract: The present invention relates to automotive interface systems and methods. In one embodiment, an automotive interface system includes a steering wheel and an integrated interpolated variable impedance array that comprises a grid of sensing elements. The sensing elements are configured to power on simultaneously and to simultaneously generate multiple currents along multiple current paths in response to sensing a touch wherein the amount of current generated by a sensing element of the grid is directly proportional to the force applied by the touch. The automotive interface system also includes an analog-to-digital converter (ADC) and a processor communicatively coupled to the interpolated variable impedance array that are configured to receive the multiple currents along multiple current paths and determine a location, a duration, an area, and a force of the touch from the multiple currents along multiple current paths.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: May 11, 2021
    Assignee: SENSEL, INC.
    Inventors: Alexander Meagher Grau, Bethany Noel Haniger, Mark Joshua Rosenberg, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich
  • Patent number: 10990223
    Abstract: The present invention relates to interpolated variable impedance touch sensor arrays for force-aware large-surface device interaction. An exemplary system for detecting a continuous pressure curve includes a plurality of physical variable impedance array (VIA) columns connected by interlinked impedance columns and a plurality of physical VIA rows connected by interlinked impedance rows. The system also includes a plurality of column drive sources connected to the interlinked impedance columns and to the plurality of physical VIA columns through the interlinked impedance columns as well as a plurality of row sense sinks connected to the interlinked impedance rows and to the plurality of physical VIA rows through the interlinked impedance rows. Further, the system includes a processor configured to interpolate the continuous pressure curve in the physical VIA columns and physical VIA rows from an electrical signal from the plurality of column drive sources sensed at the plurality of row sense sinks.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: April 27, 2021
    Assignee: SENSEL, INC.
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20210089183
    Abstract: The present invention relates to touch sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for gesture recognition and associating a UI element with the recognized gesture. In one embodiment, the present invention provides a variable impedance array (VIA) system for receiving a gesture that includes: a plurality of physical VIA columns connected by interlinked impedance columns; a plurality of physical VIA rows connected by interlinked impedance rows; and a processor configured to interpolate a location and/or pressure of the gesture in the physical columns and rows from an electrical signal from a plurality of column drive sources (connected to the plurality of physical VIA columns through the interlinked impedance columns) sensed at a plurality of row sense sinks (connected to the plurality of physical VIA rows through the interlinked impedance rows).
    Type: Application
    Filed: December 7, 2020
    Publication date: March 25, 2021
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Patent number: 10926523
    Abstract: Techniques for modifying surfaces of electrodes are provided. An electrode surface can be processed by applying an abrasive material or chemical solution to or against the surface to modify the surface to reduce the amount of roughness on, and/or alter the shape of, the surface. The shape of the surface can be altered by rounding or doming the surface. During surface processing, flexible or compressible support material can be applied to the back of an abrasive material, such as sandpaper, to desirably distribute pressure from the support material to the sandpaper and/or mold the shape of the sandpaper to facilitate maintaining desirable contact by the sandpaper on electrode surfaces. With regard to a flexible circuit board on which electrodes are formed, a vacuum chuck component or a temporary abrasive can be used to hold the circuit board in a flat and stationary position during surface processing.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: February 23, 2021
    Assignee: Sensel, Inc.
    Inventors: Scott Gregory Isaacson, Ilya Daniel Rosenberg, Stephanie Jeanne Oberg, Brogan Carl Miller