Patents by Inventor Stephanie Kute
Stephanie Kute has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12343521Abstract: The present disclosure relates to neuromuscular stimulation and sensing cuffs. The neuromuscular stimulation cuff has at least two fingers and a plurality of electrodes disposed on each finger. More generally, the neuromuscular stimulation cuff includes an outer, reusable component and an inner, disposable component. One or more electrodes are housed within the reusable component. The neuromuscular stimulation cuff may be produced by providing an insulating substrate layer, forming a conductive circuit on the substrate layer to form a conductive circuit layer, adhering a cover layer onto the conductive circuit layer to form a flexible circuit, and cutting at least one flexible finger from the flexible circuit. The neuromuscular stimulation cuff employs a flexible multi-electrode design which allows for reanimation of complex muscle movements in a patient, including individual finger movement.Type: GrantFiled: January 16, 2024Date of Patent: July 1, 2025Assignee: BATTELLE MEMORIAL INSTITUTEInventors: Chad E. Bouton, Jeffrey Friend, Gaurav Sharma, Andrew Sweeney, Amy M. Heintz, Stephanie Kute, Nicholas Annetta, Thomas D Haubert, Steven M. Risser, Alexander Morrow, Raymond Richard Zaborski, George Naegele Brand, Matthew Edward Mowrer
-
Publication number: 20240207605Abstract: The present disclosure relates to neuromuscular stimulation and sensing cuffs. The neuromuscular stimulation cuff has at least two fingers and a plurality of electrodes disposed on each finger. More generally, the neuromuscular stimulation cuff includes an outer, reusable component and an inner, disposable component. One or more electrodes are housed within the reusable component. The neuromuscular stimulation cuff may be produced by providing an insulating substrate layer, forming a conductive circuit on the substrate layer to form a conductive circuit layer, adhering a cover layer onto the conductive circuit layer to form a flexible circuit, and cutting at least one flexible finger from the flexible circuit. The neuromuscular stimulation cuff employs a flexible multi-electrode design which allows for reanimation of complex muscle movements in a patient, including individual finger movement.Type: ApplicationFiled: January 16, 2024Publication date: June 27, 2024Inventors: Chad E. Bouton, Jeffrey Friend, Gaurav Sharma, Andrew Sweeney, Amy M. Heintz, Stephanie Kute, Nicholas Annetta, Thomas D. Haubert, Steven M. Risser, Alexander Morrow, Raymond Richard Zaborski, George Naegele Brand, Matthew Edward Mowrer
-
Publication number: 20230020138Abstract: The present disclosure relates to neuromuscular stimulation and sensing cuffs. The neuromuscular stimulation cuff has at least two fingers and a plurality of electrodes disposed on each finger. More generally, the neuromuscular stimulation cuff includes an outer, reusable component and an inner, disposable component. One or more electrodes are housed within the reusable component. The neuromuscular stimulation cuff may be produced by providing an insulating substrate layer, forming a conductive circuit on the substrate layer to form a conductive circuit layer, adhering a cover layer onto the conductive circuit layer to form a flexible circuit, and cutting at least one flexible finger from the flexible circuit. The neuromuscular stimulation cuff employs a flexible multi-electrode design which allows for reanimation of complex muscle movements in a patient, including individual finger movement.Type: ApplicationFiled: September 15, 2022Publication date: January 19, 2023Inventors: Chad E. Bouton, Gaurav Sharma, Andrew Sweeney, Amy M. Heintz, Stephanie Kute, Nicholas Annetta, Thomas D. Haubert, Steven M. Risser, Jeffrey Friend, John Bartholomew, Rachel Thurston, Alexander C. Morrow, George Brand, Jeffrey Ellis, Matthew Mowrer, Raymond Zaborski
-
Patent number: 11534605Abstract: The present disclosure relates to neuromuscular stimulation and sensing cuffs. The neuromuscular stimulation cuff has at least two fingers and a plurality of electrodes disposed on each finger. More generally, the neuromuscular stimulation cuff includes an outer, reusable component and an inner, disposable component. One or more electrodes are housed within the reusable component. The neuromuscular stimulation cuff may be produced by providing an insulating substrate layer, forming a conductive circuit on the substrate layer to form a conductive circuit layer, adhering a cover layer onto the conductive circuit layer to form a flexible circuit, and cutting at least one flexible finger from the flexible circuit. The neuromuscular stimulation cuff employs a flexible multi-electrode design which allows for reanimation of complex muscle movements in a patient, including individual finger movement.Type: GrantFiled: May 19, 2020Date of Patent: December 27, 2022Assignee: BATTELLE MEMORIAL INSTITUTEInventors: Chad E. Bouton, Gaurav Sharma, Andrew Sweeney, Amy M. Heintz, Stephanie Kute, Nicholas Annetta, Thomas D. Haubert, Steven M. Risser, Jeffrey Friend, John Bartholomew, Rachel Thurston, Alexander C. Morrow, George Brand, Jeffrey Ellis, Matthew Mowrer, Raymond Zaborski
-
Patent number: 10765859Abstract: The present disclosure relates to neuromuscular stimulation and sensing cuffs. The neuromuscular stimulation cuff has at least two fingers and a plurality of electrodes disposed on each finger. More generally, the neuromuscular stimulation cuff includes an outer, reusable component and an inner, disposable component. One or more electrodes are housed within the reusable component. The neuromuscular stimulation cuff may be produced by providing an insulating substrate layer, forming a conductive circuit on the substrate layer to form a conductive circuit layer, adhering a cover layer onto the conductive circuit layer to form a flexible circuit, and cutting at least one flexible finger from the flexible circuit. The neuromuscular stimulation cuff employs a flexible multi-electrode design which allows for reanimation of complex muscle movements in a patient, including individual finger movement.Type: GrantFiled: June 2, 2016Date of Patent: September 8, 2020Assignee: Battelle Memorial InstituteInventors: Chad E. Bouton, Gaurav Sharma, Andrew Sweeney, Amy M. Heintz, Stephanie Kute, Nicholas Annetta, Thomas D. Haubert, Steven M. Risser, Jeffrey Friend, John Bartholomew, Rachel Thurston, C. Alexander Morrow, George Brand, Jeffrey Ellis, Matthew Mowrer, Raymond Zaborski
-
Publication number: 20200276438Abstract: The present disclosure relates to neuromuscular stimulation and sensing cuffs. The neuromuscular stimulation cuff has at least two fingers and a plurality of electrodes disposed on each finger. More generally, the neuromuscular stimulation cuff includes an outer, reusable component and an inner, disposable component. One or more electrodes are housed within the reusable component. The neuromuscular stimulation cuff may be produced by providing an insulating substrate layer, forming a conductive circuit on the substrate layer to form a conductive circuit layer, adhering a cover layer onto the conductive circuit layer to form a flexible circuit, and cutting at least one flexible finger from the flexible circuit. The neuromuscular stimulation cuff employs a flexible multi-electrode design which allows for reanimation of complex muscle movements in a patient, including individual finger movement.Type: ApplicationFiled: May 19, 2020Publication date: September 3, 2020Inventors: Chad E. Bouton, Gaurav Sharma, Andrew Sweeney, Amy M. Heintz, Stephanie Kute, Nicholas Annetta, Thomas D. Haubert, Steven M. Risser, Jeffrey Friend, John Bartholomew, Rachel Thurston, C. Alexander Morrow, George Brand, Jeffrey Ellis, Matthew Mowrer, Raymond Zaborski
-
Patent number: 10568771Abstract: A wound dressing system that includes a conformal cover and an infusion pump is provided. The cover includes a fluid port and an oxygen catalyst. The infusion pump is configured to deliver a bioactive liquid to the cover via the fluid port. The liquid includes an oxygen precursor. Upon combination, the oxygen catalyst and precursor react to form oxygen. A method of applying a wound dressing system including a bioactive powder, a bioactive liquid, and a conformal cover to a wound site is also provided. The method includes applying the powder to the wound site; securing the cover around the wound site, where the cover includes an oxygen catalyst and a fluid port; and delivering the bioactive liquid to at least an inner layer of the cover via the fluid port, where the bioactive liquid includes an oxygen precursor.Type: GrantFiled: January 23, 2015Date of Patent: February 25, 2020Assignee: Avent, Inc.Inventors: John Gavin MacDonald, Ramanathan S. Lalgudi, Karien J. Rodriguez, Reade Harpham, Stephanie Kute, Alison Salyer Bagwell, Brian Joseph Cuevas
-
Patent number: 10327956Abstract: A wound dressing system comprising a wrap and a frangible ampoule is provided. The wrap is configured to contact/surround a wound site and includes an oxygen catalyst. The ampoule includes an oxygen precursor. The catalyst and precursor are configured to form oxygen when combined. A wound dressing system including a container is also provided that includes a powder, wrap, and frangible ampoule. The powder is disposed within the container, which is configured to allow the powder to be dispersed onto a wound site when activated. The wrap, which may include an oxygen catalyst, is also disposed in the container and is configured to contact/surround the wound site. The ampoule, also disposed in the container, includes a liquid containing an oxygen precursor. The liquid is configured to contact the wrap when the container is activated. Further, the catalyst and precursor are configured to form oxygen when combined.Type: GrantFiled: January 23, 2015Date of Patent: June 25, 2019Assignee: Avent, Inc.Inventors: John Gavin MacDonald, Kelly Dean Branham, David William Koenig, Andrew V. Sweeney, Stephanie Kute, Ramanathan S. Lalgudi, Phillip Andrew Schorr, Alison Salyer Bagwell, Brian Joseph Cuevas, David James McNamara
-
Publication number: 20180154140Abstract: The present disclosure relates to neuromuscular stimulation and sensing cuffs. The neuromuscular stimulation cuff has at least two fingers and a plurality of electrodes disposed on each finger. More generally, the neuromuscular stimulation cuff includes an outer, reusable component and an inner, disposable component. One or more electrodes are housed within the reusable component. The neuromuscular stimulation cuff may be produced by providing an insulating substrate layer, forming a conductive circuit on the substrate layer to form a conductive circuit layer, adhering a cover layer onto the conductive circuit layer to form a flexible circuit, and cutting at least one flexible finger from the flexible circuit. The neuromuscular stimulation cuff employs a flexible multi-electrode design which allows for reanimation of complex muscle movements in a patient, including individual finger movement.Type: ApplicationFiled: June 2, 2016Publication date: June 7, 2018Inventors: Chad E. Bouton, Gaurav Sharma, Andrew Sweeney, Amy M. Heintz, Stephanie Kute, Nicholas Annetta, Thomas D. Haubert, Steven M. Risser, Jeffrey Friend, John Bartholomew, Rachel Thurston, C. Alexander Morrow, George Brand, Jeffrey Ellis, Matthew Mowrer, Raymond Zaborski
-
Publication number: 20180154133Abstract: The present disclosure relates to neuromuscular stimulation and sensing cuffs. The neuromuscular stimulation cuff has at least two fingers and a plurality of electrodes disposed on each finger. More generally, the neuromuscular stimulation cuff includes an outer, reusable component and an inner, disposable component. One or more electrodes are housed within the reusable component. The neuromuscular stimulation cuff may be produced by providing an insulating substrate layer, forming a conductive circuit on the substrate layer to form a conductive circuit layer, adhering a cover layer onto the conductive circuit layer to form a flexible circuit, and cutting at least one flexible finger from the flexible circuit. The neuromuscular stimulation cuff employs a flexible multi-electrode design which allows for reanimation of complex muscle movements in a patient, including individual finger movement.Type: ApplicationFiled: January 16, 2018Publication date: June 7, 2018Inventors: Chad E. Bouton, Jeffrey Friend, Gaurav Sharma, Andrew Sweeney, Amy M. Heinz, Stephanie Kute, Nicholas Annetta, Thomas D. Haubert, Steven M. Risser, Alexander Morrow, Raymond Richard Zaborski, George Naegele Brand, Matthew Edward Mowrer
-
Patent number: 9884179Abstract: The present disclosure relates to neuromuscular stimulation and sensing cuffs. The neuromuscular stimulation cuff has at least two fingers and a plurality of electrodes disposed on each finger. More generally, the neuromuscular stimulation cuff includes an outer, reusable component and an inner, disposable component. One or more electrodes are housed within the reusable component. The neuromuscular stimulation cuff may be produced by providing an insulating substrate layer, forming a conductive circuit on the substrate layer to form a conductive circuit layer, adhering a cover layer onto the conductive circuit layer to form a flexible circuit, and cutting at least one flexible finger from the flexible circuit. The neuromuscular stimulation cuff employs a flexible multi-electrode design which allows for reanimation of complex muscle movements in a patient, including individual finger movement.Type: GrantFiled: June 2, 2015Date of Patent: February 6, 2018Assignee: BBATTELLE MEMORIAL INSTITUTEInventors: Chad E. Bouton, Jeffrey Friend, Gaurav Sharma, Andrew Sweeney, Amy M. Heintz, Stephanie Kute, Nicholas Annetta, Thomas D. Haubert, Steven M. Risser, Alexander Morrow, Raymond Richard Zaborski, George Naegele Brand, Matthew Edward Mowrer
-
Publication number: 20170007461Abstract: A wound dressing system that includes a conformal cover and an infusion pump is provided. The cover includes a fluid port and an oxygen catalyst. The infusion pump is configured to deliver a bioactive liquid to the cover via the fluid port. The liquid includes an oxygen precursor. Upon combination, the oxygen catalyst and precursor react to form oxygen. A method of applying a wound dressing system including a bioactive powder, a bioactive liquid, and a conformal cover to a wound site is also provided. The method includes applying the powder to the wound site; securing the cover around the wound site, where the cover includes an oxygen catalyst and a fluid port; and delivering the bioactive liquid to at least an inner layer of the cover via the fluid port, where the bioactive liquid includes an oxygen precursor.Type: ApplicationFiled: January 23, 2015Publication date: January 12, 2017Inventors: John Gavin MacDonald, Ramanathan S. Lalgudi, Karien J. Rodriguez, Reade Harpham, Stephanie Kute, Alison Salyer Bagwell, Brian Joseph Cuevas
-
Publication number: 20170007460Abstract: A wound dressing system comprising a wrap and a frangible ampoule is provided. The wrap is configured to contact/surround a wound site and includes an oxygen catalyst. The ampoule includes an oxygen precursor. The catalyst and precursor are configured to form oxygen when combined. A wound dressing system including a container is also provided that includes a powder, wrap, and frangible ampoule. The powder is disposed within the container, which is configured to allow the powder to be dispersed onto a wound site when activated. The wrap, which may include an oxygen catalyst, is also disposed in the container and is configured to contact/surround the wound site. The ampoule, also disposed in the container, includes a liquid containing an oxygen precursor. The liquid is configured to contact the wrap when the container is activated. Further, the catalyst and precursor are configured to form oxygen when combined.Type: ApplicationFiled: January 23, 2015Publication date: January 12, 2017Inventors: John Gavin MacDonald, Kelly Dean Branham, David William Koenig, Andrew V. Sweeney, Stephanie Kute, Ramanathan S. Lalgudi, Phillip Andrew Schorr, Alison Salyer Bagwell, Brian Joseph Cuevas, David James McNamara
-
Publication number: 20150306373Abstract: The present disclosure relates to neuromuscular stimulation and sensing cuffs. The neuromuscular stimulation cuff has at least two fingers and a plurality of electrodes disposed on each finger. More generally, the neuromuscular stimulation cuff includes an outer, reusable component and an inner, disposable component. One or more electrodes are housed within the reusable component. The neuromuscular stimulation cuff may be produced by providing an insulating substrate layer, forming a conductive circuit on the substrate layer to form a conductive circuit layer, adhering a cover layer onto the conductive circuit layer to form a flexible circuit, and cutting at least one flexible finger from the flexible circuit. The neuromuscular stimulation cuff employs a flexible multi-electrode design which allows for reanimation of complex muscle movements in a patient, including individual finger movement.Type: ApplicationFiled: June 2, 2015Publication date: October 29, 2015Inventors: Chad E. Bouton, Jeffrey Friend, Gaurav Sharma, Andrew Sweeney, Amy M. Heintz, Stephanie Kute, Nicholas Annetta, Thomas D. Haubert, Steven M. Risser
-
Patent number: 7731650Abstract: A system and method for capturing and placing a cardiac assist device on a heart. A cardiac assist device is delivered to a chest cavity of a being through an opening provided in a chest wall. A magnetically charged tether is provided at each corner or extremity of the cardiac assist device. Capture instruments magnetically couple with a corresponding tether. The magnetically coupled instruments and tethers then maneuver the cardiac assist device to a desired position about the heart. The cardiac assist device is then secured directly to the heart or to anchoring devices separately provided and secured to the heart.Type: GrantFiled: June 30, 2004Date of Patent: June 8, 2010Assignee: Ethicon, Inc.Inventors: Stephanie Kute, Steven Zung-Hong Wu
-
Patent number: 7601117Abstract: Systems and methods for reducing distention in designated portions of a heart muscle while assisting cardiac valve alignment and coaptation. Anchoring devices are secured to the heart muscle and a bio-compatible cardiac assist device placed over portions of the heart muscle is separately secured to the anchoring devices. The cardiac assist device may be a material that wraps portions of the heart muscle, or may be straps that wrap portions of the heart muscle. Tightening and securing the cardiac assist device in place helps to reduce distention in chambers of the heart muscle and aids alignment and coaptation of cardiac valves.Type: GrantFiled: June 30, 2004Date of Patent: October 13, 2009Assignee: Ethicon, Inc.Inventors: Stephanie Kute, Steven Zung-Hong Wu
-
Publication number: 20060004247Abstract: Systems and methods for reducing distention in designated portions of a heart muscle while assisting cardiac valve alignment and coaptation. Anchoring devices are secured to the heart muscle and a bio-compatible cardiac assist device placed over portions of the heart muscle is separately secured to the anchoring devices. The cardiac assist device may be a material that wraps portions of the heart muscle, or may be straps that wrap portions of the heart muscle. Tightening and securing the cardiac assist device in place helps to reduce distention in chambers of the heart muscle and aids alignment and coaptation of cardiac valves.Type: ApplicationFiled: June 30, 2004Publication date: January 5, 2006Applicant: Ethicon IncorporatedInventors: Stephanie Kute, Steven Wu
-
Publication number: 20060004249Abstract: Systems and methods for sizing a cardiac assist device to a heart. A bio-compatible material placed as a cardiac assist device over portions of the heart as desired, is sized to fit the exterior contours of the heart by gathering excess material using a reduction ring, draw strings, or a roller. The remaining material of the cardiac assist device may be sutured, clipped, or otherwise anchored to achieve the desired fit of the cardiac assist device to the heart. Subsequent adjustments to increase or decrease the size of the cardiac assist device may be made to accommodate subsequent changes to the size of the heart by re-performing the reduction ring, draw strings, or roller procedure and re-orienting the sutures, clips, or other anchoring techniques to fit the cardiac assist device to the subsequent heart size.Type: ApplicationFiled: June 30, 2004Publication date: January 5, 2006Applicant: Ethicon IncorporatedInventors: Stephanie Kute, Steven Wu
-
Publication number: 20060004248Abstract: A system and method for capturing and placing a cardiac assist device on a heart. A cardiac assist device is delivered to a chest cavity of a being through an opening provided in a chest wall. A magnetically charged tether is provided at each corner or extremity of the cardiac assist device. Capture instruments magnetically couple with a corresponding tether. The magnetically coupled instruments and tethers then maneuver the cardiac assist device to a desired position about the heart. The cardiac assist device is then secured directly to the heart or to anchoring devices separately provided and secured to the heart.Type: ApplicationFiled: June 30, 2004Publication date: January 5, 2006Applicant: Ethicon IncorporatedInventors: Stephanie Kute, Steven Wu