Patents by Inventor Stephen A. Empedocles

Stephen A. Empedocles has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080041814
    Abstract: The present invention is directed to methods to harvest, integrate and exploit nanomaterials, and particularly elongated nanowire materials. The invention provides methods for harvesting nanowires that include selectively etching a sacrificial layer placed on a nanowire growth substrate to remove nanowires. The invention also provides methods for integrating nanowires into electronic devices that include placing an outer surface of a cylinder in contact with a fluid suspension of nanowires and rolling the nanowire coated cylinder to deposit nanowires onto a surface. Methods are also provided to deposit nanowires using an ink-jet printer or an aperture to align nanowires. Additional aspects of the invention provide methods for preventing gate shorts in nanowire based transistors. Additional methods for harvesting and integrating nanowires are provided.
    Type: Application
    Filed: August 16, 2007
    Publication date: February 21, 2008
    Applicant: NANOSYS, INC.
    Inventors: Linda Romano, Jian Chen, Xiangfeng Duan, Robert Dubrow, Stephen Empedocles, Jay Goldman, James Hamilton, David Heald, Francesco Lemmi, Chunming Niu, Yaoling Pan, George Pontis, Vijendra Sahi, Erik Scher, David Stumbo, Jeffery Whiteford
  • Publication number: 20080044911
    Abstract: Methods of detecting a component of interest, a change in charge, a pH, a cellular response using nanosensors are provided. Nanosensors, including nanowires and nanowire arrays comprising functionalized and/or non-functionalized nanowires are provided. Nanosensors are used for detection in cellular fragmentation, multiple concentration analysis, glucose detection, and intracellular analysis.
    Type: Application
    Filed: October 18, 2007
    Publication date: February 21, 2008
    Applicant: NANOSYS, INC.
    Inventors: Larry Bock, R. Daniels, Stephen Empedocles, John Owicki
  • Publication number: 20070296032
    Abstract: Artificial dielectrics using nanostructures, such as nanowires, are disclosed. In embodiments, artificial dielectrics using other nanostructures, such as nanorods, nanotubes or nanoribbons and the like are disclosed. The artificial dielectric includes a dielectric material with a plurality of nanowires (or other nanostructures) embedded within the dielectric material. Very high dielectric constants can be achieved with an artificial dielectric using nanostructures. The dielectric constant can be adjusted by varying the length, diameter, carrier density, shape, aspect ratio, orientation and density of the nanostructures. Additionally, a controllable artificial dielectric using nanostructures, such as nanowires, is disclosed in which the dielectric constant can be dynamically adjusted by applying an electric field to the controllable artificial dielectric. A wide range of electronic devices can use artificial dielectrics with nanostructures to improve performance.
    Type: Application
    Filed: August 15, 2005
    Publication date: December 27, 2007
    Applicant: Nanosys, Inc.
    Inventors: David Stumbo, Stephen Empedocles, Francisco Leon, J. Parce
  • Patent number: 7303875
    Abstract: Methods of detecting components of interest, e.g., nucleic acids and sugars, are provided. The methods comprise contacting one or more nanowires comprising a functional group with a sample containing the component or components of interest. In one embodiment, the functional group comprises a hairpin oligonucleotide, e.g., a hairpin that changes conformation upon binding the component of interest, e.g., a nucleic acid. The change in conformation produces a change in charge that is detected. In another embodiment, the functional group comprises an enzyme, e.g., glucose oxidase, which produces a change in pH when glucose is present in a sample.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: December 4, 2007
    Assignee: Nanosys, Inc.
    Inventors: Larry Bock, R. Hugh Daniels, Stephen Empedocles
  • Publication number: 20070264634
    Abstract: Methods of detecting a component of interest, a change in charge, a pH, a cellular response using nanosensors are provided. Nanosensors, including nanowires and nanowire arrays comprising functionalized and/or non-functionalized nanowires are provided. Nanosensors are, used for detection in cellular fragmentation, multiple concentration analysis, glucose detection, and intracellular analysis.
    Type: Application
    Filed: October 9, 2003
    Publication date: November 15, 2007
    Inventors: Larry Bock, R. Daniels, Stephen Empedocles, Chumming Niu, John Owicki, Vijendra Sahi, Calvin Chow, George Pontis
  • Publication number: 20070228439
    Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
    Type: Application
    Filed: June 8, 2007
    Publication date: October 4, 2007
    Applicant: NANOSYS, INC.
    Inventors: Xiangfeng Duan, Chunming Niu, Stephen Empedocles, Linda Romano, Jian Chen, Vijendra Sahi, Lawrence Bock, David Stumbo, J. Parce, Jay Goldman
  • Patent number: 7262501
    Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: August 28, 2007
    Assignee: Nanosys, Inc.
    Inventors: Xiangfeng Duan, Chunming Niu, Stephen Empedocles
  • Patent number: 7233041
    Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: June 19, 2007
    Assignee: Nanosys, Inc.
    Inventors: Xiangfeng Duan, Chunming Niu, Stephen A. Empedocles, Linda T. Romano, Jian Chen, Vijendra Sahi, Lawrence A. Bock, David P. Stumbo, Parce J. Wallace, Jay L. Goldman
  • Patent number: 7228050
    Abstract: This invention provides composite materials comprising nanostructures (e.g., nanowires, branched nanowires, nanotetrapods, nanocrystals, and nanoparticles). Methods and compositions for making such nanocomposites are also provided, as are articles comprising such composites. Waveguides and light concentrators comprising nanostructures (not necessarily as part of a nanocomposite) are additional features of the invention.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: June 5, 2007
    Assignee: Nanosys, Inc.
    Inventors: Mihai Buretea, Stephen Empedocles, Chunming Niu, Erik C. Scher
  • Publication number: 20070122101
    Abstract: This invention provides composite materials comprising nanostructures (e.g., nanowires, branched nanowires, nanotetrapods, nanocrystals, and nanoparticles). Methods and compositions for making such nanocomposites are also provided, as are articles comprising such composites. Waveguides and light concentrators comprising nanostructures (not necessarily as part of a nanocomposite) are additional features of the invention.
    Type: Application
    Filed: January 26, 2006
    Publication date: May 31, 2007
    Applicant: NANOSYS, Inc.
    Inventors: Mihai Buretea, Stephen Empedocles, Chunming Niu, Erik Scher
  • Publication number: 20070120167
    Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
    Type: Application
    Filed: November 21, 2006
    Publication date: May 31, 2007
    Applicant: Nanosys, Inc.
    Inventors: Xiangfeng Duan, Chunming Niu, Stephen Empedocles, Linda Romano, Jian Chen, Vijendra Sahi, Lawrence Bock, David Stumbo, J. Parce, Jay Goldman
  • Patent number: 7179561
    Abstract: The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: February 20, 2007
    Assignee: Nanosys, Inc.
    Inventors: Chunming Niu, Calvin Y. H. Chow, Stephen A. Empedocles, J. Wallace Parce
  • Publication number: 20070012980
    Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
    Type: Application
    Filed: July 21, 2006
    Publication date: January 18, 2007
    Applicant: Nanosys, Inc.
    Inventors: Xiangfeng Duan, Chunming Niu, Stephen Empedocles, Linda Romano, Jian Chen, Vijendra Sahi, Lawrence Bock, David Stumbo, J. Parce, Jay Goldman
  • Patent number: 7151209
    Abstract: Nanostructure manufacturing methods and methods for assembling nanostructures into functional elements such as junctions, arrays and devices are provided. Systems for practicing the methods are also provided.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: December 19, 2006
    Assignee: Nanosys, Inc.
    Inventors: Stephen Empedocles, Larry Bock, Calvin Y. H. Chow, Xianfeng Duan, Chunming Niu, George Pontis, Vijendra Sahi, Linda T. Romano, David Stumbo
  • Publication number: 20060273328
    Abstract: Systems and methods to fabricate macroelectronic light emitting devices using densely oriented nanowires are disclosed. In one embodiment, core nanowires are synthesized and an insulating shell is fabricated around the nanowires. The nanowire core-shell structures are then deposited on a substrate to create a densely oriented nanowire thin film. Once the densely oriented nanowire thin film is created, a metal-insulator nanowire structure is fabricated by layering a metal on the nanowire thin film. Ohmic contacts are then created on the metal-insulator nanowire structure for operation. Application of electrical signals to the ohmic contacts causes light emission from the metal-insulator nanowire structure. Light emitting devices having densely oriented nanowire thin films are also disclosed. In an embodiment the light emitting device is, for example, a LED. The nanowires can include, for example, GaN, InP, CdS nanowires or a combination of these and other nanowires.
    Type: Application
    Filed: May 24, 2006
    Publication date: December 7, 2006
    Applicant: Nanosys, Inc.
    Inventors: Chunming Niu, Stephen Empedocles, David Zaziski
  • Publication number: 20060256059
    Abstract: The present invention is directed to a display using nanowire transistors. In particular, a liquid crystal display using nanowire pixel transistors, nanowire row transistors, nanowire column transistors and nanowire edge electronics is described. A nanowire pixel transistor is used to control the voltage applied across a pixel containing liquid crystals. A pair of nanowire row transistors is used to turn nanowire pixel transistors that are located along a row trace connected to the pair of nanowire row transistors on and off. Nanowire column transistors are used to apply a voltage across nanowire pixel transistors that are located along a column trace connected to a nanowire column transistor. Displays including organic light emitting diodes (OLED) displays, nanotube field effect displays, plasma displays, micromirror displays, micoelectromechanical (MEMs) displays, electrochromic displays and electrophoretic displays using nanowire transistors are also provided.
    Type: Application
    Filed: July 21, 2006
    Publication date: November 16, 2006
    Applicant: Nanosys, Inc.
    Inventors: Dave Stumbo, Stephen Empedocles
  • Patent number: 7135728
    Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: November 14, 2006
    Assignee: Nanosys, Inc.
    Inventors: Xiangfeng Duan, Chunming Niu, Stephen A. Empedocles, Linda T. Romano, Jian Chen, Vijendra Sahi, Lawrence A. Bock, David P. Stumbo, Parce J. Wallace, Jay L. Goldman
  • Publication number: 20060244963
    Abstract: Devices, systems, kits, and methods for detecting and/or identifying a plurality of spectrally labeled bodies well-suited for performing multiplexed assays. By spectrally labeling the beads with materials which generate identifiable spectra, a plurality of beads may be identified within the fluid. Reading of the beads is facilitated by restraining the beads in arrays, and/or using a focused laser.
    Type: Application
    Filed: June 22, 2006
    Publication date: November 2, 2006
    Inventors: Stephen Empedocles, Andrew Watson, Jian Jin
  • Publication number: 20060237537
    Abstract: Macroelectronic substrate materials incorporating nanowires are described. These are used to provide underlying electronic elements (e.g., transistors and the like) for a variety of different applications. Methods for making the macroelectronic substrate materials are disclosed. One application is for transmission an reception of RF signals in small, lightweight sensors. Such sensors can be configured in a distributed sensor network to provide security monitoring. Furthermore, a method and apparatus for a radio frequency identification (RFID) tag is described. The RFID tag includes an antenna and a beam-steering array. The beam-steering array includes a plurality of tunable elements. A method and apparatus for an acoustic cancellation device and for an adjustable phase shifter that are enabled by nanowires are also described.
    Type: Application
    Filed: June 14, 2006
    Publication date: October 26, 2006
    Applicant: Nanosys, Inc.
    Inventors: Stephen Empedocles, David Stumbo, Chunming Niu, Xianfeng Duan
  • Publication number: 20060211183
    Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
    Type: Application
    Filed: April 18, 2006
    Publication date: September 21, 2006
    Applicant: Nanosys, Inc.
    Inventors: Xiangfeng Duan, Chunming Niu, Stephen Empedocles, Linda Romano, Jian Chen, Vijendra Sahi, Lawrence Bock, David Stumbo, J. Parce, Jay Goldman