Patents by Inventor Stephen Bull
Stephen Bull has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240395220Abstract: An electrophoretic medium comprises a fluid, a first, light scattering particle (typically white) and second, third and fourth particles having three subtractive primary colors (typically magenta, cyan and yellow); at least two of these colored particles being non-light scattering. The first and second particles bear polymer coatings such that the electric field required to separate an aggregate formed by the third and the fourth particles is greater than that required to separate an aggregate formed from any other two types of particles. Methods for driving the medium to produce white, black, magenta, cyan, yellow, red, green and blue colors are also described.Type: ApplicationFiled: July 31, 2024Publication date: November 28, 2024Inventors: Stephen J. TELFER, Stephen BULL, Jennifer M. MORRISON, Luke M. SLOMINSKI, David Darrell MILLER, Olga Vladimirova BARYKINA-TASSA, Christopher L. HOOGEBOOM, Ana L. LATTES, Lee YEZEK, Brandon MACDONALD, Kosta LADAVAC, Craig A. HERB
-
Patent number: 12080251Abstract: An electrophoretic medium comprises a fluid, a first, light scattering particle (typically white) and second, third and fourth particles having three subtractive primary colors (typically magenta, cyan and yellow); at least two of these colored particles being non-light scattering. The first and second particles bear polymer coatings such that the electric field required to separate an aggregate formed by the third and the fourth particles is greater than that required to separate an aggregate formed from any other two types of particles. Methods for driving the medium to produce white, black, magenta, cyan, yellow, red, green and blue colors are also described.Type: GrantFiled: August 30, 2022Date of Patent: September 3, 2024Assignee: E Ink CorporationInventors: Stephen J. Telfer, Stephen Bull, Jennifer M. Morrison, Luke M. Slominski, David Darrell Miller, Olga Vladimirova Barykina-Tassa, Christopher L. Hoogeboom, Ana L. Lattes, Lee Yezek, Brandon MacDonald, Kosta Ladavac, Craig A. Herb
-
Publication number: 20230360614Abstract: A variable transmission film may include an electrophoretic medium having a plurality of capsules and a binder, each capsule containing a plurality of electrically charged particles and a fluid, the charged particles being movable by application of an electric field and being capable of being switched between an open state and a closed state. The film may include at least one of a binder containing fish gelatin and a polyanion; a binder containing one or more tinting agents; capsules containing charge control agents, such as an oligoamine-terminated polyolefin and a branched chain fatty acid comprising at least 8 carbon atoms; a selection of capsules in which at least 60% have a diameter between 50 ?m and 90 ?m and at least 15% have a diameter between 20 ?m and 49 ?m; a tinted adhesive layer; and a fluid selected from one or more nonconjugated olefinic hydrocarbons.Type: ApplicationFiled: July 19, 2023Publication date: November 9, 2023Inventors: Peter Carsten Bailey WIDGER, Jay William ANSETH, Richard J. PAOLINI, JR., Mark Benjamin ROMANOWSKY, Jillian SMITH, Stephen J. TELFER, Craig Alan BREEN, Stephen BULL
-
Patent number: 11761123Abstract: A fiber capable of switching optical states is provided. The fiber includes a laminate having a first electrode layer, a second electrode layer, and an electro-optic material between the first and second electrode layers, at least one of the first and second electrode layers being light-transmissive and a sheath surrounding the laminate. The fiber may have a ribbon-like structure, i.e. a width that is substantially greater than its thickness. The electro-optic medium may be an encapsulated electrophoretic medium.Type: GrantFiled: August 6, 2020Date of Patent: September 19, 2023Assignees: E Ink Corporation, Advanced Functional Fabrics of America, Inc.Inventors: Richard J. Paolini, Jr., Mihai Ibanescu, Stephen Bull, Jay William Anseth
-
Patent number: 11749218Abstract: A variable transmission film may include an electrophoretic medium having a plurality of capsules and a binder, each capsule containing a plurality of electrically charged particles and a fluid, the charged particles being movable by application of an electric field and being capable of being switched between an open state and a closed state. The film may include at least one of a binder containing fish gelatin and a polyanion; a binder containing one or more tinting agents; capsules containing charge control agents, such as an oligoamine-terminated polyolefin and a branched chain fatty acid comprising at least 8 carbon atoms; a selection of capsules in which at least 60% have a diameter between 50 ?m and 90 ?m and at least 15% have a diameter between 20 ?m and 49 ?m; a tinted adhesive layer; and a fluid selected from one or more nonconjugated olefinic hydrocarbons.Type: GrantFiled: September 17, 2020Date of Patent: September 5, 2023Assignee: E Ink CorporationInventors: Peter Carsten Bailey Widger, Jay William Anseth, Richard J. Paolini, Jr., Mark Benjamin Romanowsky, Jillian Smith, Stephen J. Telfer, Craig Alan Breen, Stephen Bull
-
Publication number: 20230005439Abstract: An electrophoretic medium comprises a fluid, a first, light scattering particle (typically white) and second, third and fourth particles having three subtractive primary colors (typically magenta, cyan and yellow); at least two of these colored particles being non-light scattering. The first and second particles bear polymer coatings such that the electric field required to separate an aggregate formed by the third and the fourth particles is greater than that required to separate an aggregate formed from any other two types of particles. Methods for driving the medium to produce white, black, magenta, cyan, yellow, red, green and blue colors are also described.Type: ApplicationFiled: August 30, 2022Publication date: January 5, 2023Inventors: Stephen J. TELFER, Stephen BULL, Jennifer M. MORRISON, Luke M. SLOMINSKI, David Darrell MILLER, Olga Vladimirova BARYKINA-TASSA, Christopher L. HOOGEBOOM, Ana L. LATTES, Lee YEZEK, Brandon MACDONALD, Kosta LADAVAC, Craig A. HERB
-
Patent number: 11468855Abstract: An electrophoretic medium comprises a fluid, a first, light scattering particle (typically white) and second, third and fourth particles having three subtractive primary colors (typically magenta, cyan and yellow); at least two of these colored particles being non-light scattering. The first and second particles bear polymer coatings such that the electric field required to separate an aggregate formed by the third and the fourth particles is greater than that required to separate an aggregate formed from any other two types of particles. Methods for driving the medium to produce white, black, magenta, cyan, yellow, red, green and blue colors are also described.Type: GrantFiled: April 27, 2020Date of Patent: October 11, 2022Assignee: E Ink CorporationInventors: Stephen J. Telfer, Stephen Bull, Jennifer M. Morrison, Luke M. Slominski, David Darrell Miller, Olga Vladimirova Barykina-Tassa, Christopher L. Hoogeboom, Ana L. Lattes, Lee Yezek, Brandon MacDonald, Kosta Ladavac, Craig A. Herb
-
Patent number: 11195481Abstract: An electrophoretic display comprising a fluid including a first species of particles and a charge control agent disposed between first and second electrodes. When a first addressing impulse have an electrical polarity is applied to the medium, the first species of particles move in one direction relative to the electric field, but when a second addressing impulse, larger than the first addressing impulse but having the same electrical polarity, is applied to the medium, the first species of particles move in the opposed direction relative to the electric field.Type: GrantFiled: September 27, 2019Date of Patent: December 7, 2021Assignee: E Ink CorporationInventors: Stephen J. Telfer, Stephen Bull, Alain Bouchard, Craig A. Herb, Kosta Ladavac, Ana L. Lattes, Jennifer M. Morrison, Richard J. Paolini, Jr., Michael Thomas Regan, Luke M. Slominski, Lee Yezek, Kenneth R. Crounse, J. Ryan Kruse, Christopher L. Hoogeboom, Jason D. Feick, David Darrell Miller
-
Publication number: 20210210026Abstract: An electrophoretic display comprising a fluid including a first species of particles and a charge control agent disposed between first and second electrodes. When a first addressing impulse have an electrical polarity is applied to the medium, the first species of particles move in one direction relative to the electric field, but when a second addressing impulse, larger than the first addressing impulse but having the same electrical polarity, is applied to the medium, the first species of particles move in the opposed direction relative to the electric field.Type: ApplicationFiled: March 25, 2021Publication date: July 8, 2021Inventors: Stephen J. TELFER, Stephen BULL, Alain BOUCHARD, Craig A. HERB, Kosta LADAVAC, Ana L. LATTES, Jennifer M. MORRISON, Richard J. PAOLINI, JR., Michael Thomas REGAN, Luke M. SLOMINSKI, Lee YEZEK, Kenneth R. CROUNSE, J. Ryan KRUSE, Christopher L. HOOGEBOOM, Jason D. FEICK, David D. MILLER
-
Publication number: 20210132459Abstract: A method for making a non-planar (three-dimensional) electrophoretic display including a light-transmissive front substrate that functions as a viewing surface. A light-transmissive conductive layer is incorporated into, or adhered to, the light-transmissive front substrate, whereupon a layer of electrophoretic encapsulated media is attached thereto. After the electrophoretic medium is deposited, a back electrode is attached or deposited. When a voltage is provided between the light-transmissive conductive layer and the back electrode, the image state of the electrophoretic medium is switched, thereby creating a color-changing surface. Such a color-changing surface can be incorporated into a toy, an appliance, an electronic device, or other suitable structure.Type: ApplicationFiled: November 4, 2020Publication date: May 6, 2021Inventor: Stephen BULL
-
Patent number: 10969604Abstract: An apparatus for a three-dimensional display is disclosed that includes a waveguide having a pair of opposed faces configured to propagate radiation along a length of the waveguide between the faces, a radiation source optically coupled to the waveguide and configured to transmit the radiation to the waveguide, at least one prismatic element having a face optically coupled to at least one of the faces of the waveguide, and a layer of image modulating material optically coupled to at least one of the faces of the waveguide. The image modulating material may be optically coupled to an area of at least one of the faces of the waveguide, at least a portion of the area being located outside a perimeter of a face of the prismatic element optically coupled to at least one of the faces of the waveguide.Type: GrantFiled: September 10, 2019Date of Patent: April 6, 2021Assignee: E Ink CorporationInventors: Stephen J. Telfer, Stephen Bull, John L. Chuma, George G. Harris, Kosta Ladavac, Allan Sadun
-
Publication number: 20210040654Abstract: A fiber capable of switching optical states is provided. The fiber includes a laminate having a first electrode layer, a second electrode layer, and an electro-optic material between the first and second electrode layers, at least one of the first and second electrode layers being light-transmissive and a sheath surrounding the laminate. The fiber may have a ribbon-like structure, i.e. a width that is substantially greater than its thickness. The electro-optic medium may be an encapsulated electrophoretic medium.Type: ApplicationFiled: August 6, 2020Publication date: February 11, 2021Applicants: E Ink Corporation, Advanced Functional Fabrics of AmericaInventors: Richard J. PAOLINI, JR., Mihai IBANESCU, Stephen BULL, Jay William ANSETH
-
Patent number: 10901285Abstract: A first display comprises a layer of electro-optic material with first and second electrodes on opposed sides thereof, at least one electrode. One or both electrodes having at least two spaced contacts, and voltage control means are arranged to vary the potential difference between the two spaced contacts attached to the same electrode. A second display comprises a layer of electro-optic material with a sequence of at least three electrodes adjacent thereto. Voltage control means vary the potential difference between the first and last electrodes of the sequence. The electrodes of the sequence alternate between the two surfaces of the layer of electro-optic material, and have edges which overlap with or lie adjacent the preceding and following electrodes of the sequence. The electrodes, other than the first and last, are electrically isolated such that the potential thereof is controlled by passage of current through the layer of electro-optic material. Methods for driving these displays are also provided.Type: GrantFiled: December 13, 2019Date of Patent: January 26, 2021Assignee: E Ink CorporationInventors: Richard J. Paolini, Jr., Stephen Bull, Seth J. Bishop, Stephen J. Telfer, Karl Raymond Amundson
-
Publication number: 20210002488Abstract: A variable transmission film may include an electrophoretic medium having a plurality of capsules and a binder, each capsule containing a plurality of electrically charged particles and a fluid, the charged particles being movable by application of an electric field and being capable of being switched between an open state and a closed state. The film may include at least one of a binder containing fish gelatin and a polyanion; a binder containing one or more tinting agents; capsules containing charge control agents, such as an oligoamine-terminated polyolefin and a branched chain fatty acid comprising at least 8 carbon atoms; a selection of capsules in which at least 60% have a diameter between 50 ?m and 90 ?m and at least 15% have a diameter between 20 ?m and 49 ?m; a tinted adhesive layer; and a fluid selected from one or more nonconjugated olefinic hydrocarbons.Type: ApplicationFiled: September 17, 2020Publication date: January 7, 2021Inventors: Peter Carsten Bailey WIDGER, Jay William ANSETH, Richard J. PAOLINI, JR., Mark Benjamin ROMANOWSKY, Jillian SMITH, Stephen J. TELFER, Craig Alan BREEN, Stephen BULL
-
Patent number: 10809590Abstract: A variable transmission film may include an electrophoretic medium having a plurality of capsules and a binder, each capsule containing a plurality of electrically charged particles and a fluid, the charged particles being movable by application of an electric field and being capable of being switched between an open state and a closed state. The film may include at least one of a binder containing fish gelatin and a polyanion; a binder containing one or more tinting agents; capsules containing charge control agents, such as an oligoamine-terminated polyolefin and a branched chain fatty acid comprising at least 8 carbon atoms; a selection of capsules in which at least 60% have a diameter between 50 ?m and 90 ?m and at least 15% have a diameter between 20 ?m and 49 ?m; a tinted adhesive layer; and a fluid selected from one or more nonconjugated olefinic hydrocarbons.Type: GrantFiled: June 14, 2018Date of Patent: October 20, 2020Assignee: E Ink CorporationInventors: Peter Carsten Bailey Widger, Jay William Anseth, Richard J. Paolini, Jr., Mark Benjamin Romanowsky, Jillian Smith, Stephen J. Telfer, Craig Alan Breen, Stephen Bull
-
Patent number: 10796649Abstract: A variable transmission medium comprises a fluid and a plurality of nanoparticles dispersed in the fluid, wherein addition of acid to the fluid causes the nanoparticles to flocculate and form aggregates of particles that scatter light. The nanoparticles may comprise at least one metal oxide, such as titanium dioxide, zinc oxide or zirconium dioxide. The fluid may have a dielectric constant less than about 10. The medium may be used in, for example, privacy glass for a conference room.Type: GrantFiled: April 23, 2018Date of Patent: October 6, 2020Assignee: E Ink CorporationInventors: Stephen J. Telfer, Richard J. Paolini, Jr., Stephen Bull, Joshua A. Ritchey, Kosta Ladavac, Lee Yezek, Craig A. Herb, Peter Carsten Bailey Widger
-
Publication number: 20200264488Abstract: An electrophoretic medium comprises a fluid, a first, light scattering particle (typically white) and second, third and fourth particles having three subtractive primary colors (typically magenta, cyan and yellow); at least two of these colored particles being non-light scattering. The first and second particles bear polymer coatings such that the electric field required to separate an aggregate formed by the third and the fourth particles is greater than that required to separate an aggregate formed from any other two types of particles. Methods for driving the medium to produce white, black, magenta, cyan, yellow, red, green and blue colors are also described.Type: ApplicationFiled: April 27, 2020Publication date: August 20, 2020Inventors: Stephen J. TELFER, Stephen BULL, Jennifer M. MORRISON, Luke M. SLOMINSKI, David Darrell MILLER, Olga Vladimirova BARYKINA-TASSA, Christopher L. HOOGEBOOM, Ana L. LATTES, Lee YEZEK, Brandon MACDONALD, Kosta LADAVAC, Craig A. HERB
-
Patent number: 10678111Abstract: An electrophoretic medium comprises a fluid, a first, light scattering particle (typically white) and second, third and fourth particles having three subtractive primary colors (typically magenta, cyan and yellow); at least two of these colored particles being non-light scattering. The first and second particles bear polymer coatings such that the electric field required to separate an aggregate formed by the third and the fourth particles is greater than that required to separate an aggregate formed from any other two types of particles. Methods for driving the medium to produce white, black, magenta, cyan, yellow, red, green and blue colors are also described.Type: GrantFiled: December 26, 2017Date of Patent: June 9, 2020Assignee: E Ink CorporationInventors: Stephen J. Telfer, Stephen Bull, Jennifer M. Morrison, Luke M. Slominski, David Darrell Miller, Olga Vladimirova Barykina-Tassa, Christopher L. Hoogeboom, Ana L. Lattes, Lee Yezek, Brandon MacDonald, Kosta Ladavac, Craig A. Herb
-
Publication number: 20200174336Abstract: Systems and methods are disclosed for pressure-sensitive, electrophoretic displays, which may optionally include haptic feedback. A display may comprise a first conductive layer having a pressure-sensitive conductivity and an electrophoretic layer positioned adjacent to the first conductive layer, wherein the electrophoretic layer is in electrical communication with the first conductive layer and is configured to locally change state based on a pressure applied to the first conductive layer. Local and global writing and erasing of the display can also be achieved.Type: ApplicationFiled: November 12, 2019Publication date: June 4, 2020Inventors: John L. CHUMA, Allan SADUN, Stephen J. TELFER, Stephen BULL, Sunil Krishna SAINIS, Seth J. BISHOP, Richard J. PAOLINI, JR., Kosta LADAVAC
-
Publication number: 20200118480Abstract: A first display comprises a layer of electro-optic material with first and second electrodes on opposed sides thereof, at least one electrode. One or both electrodes having at least two spaced contacts, and voltage control means are arranged to vary the potential difference between the two spaced contacts attached to the same electrode. A second display comprises a layer of electro-optic material with a sequence of at least three electrodes adjacent thereto. Voltage control means vary the potential difference between the first and last electrodes of the sequence. The electrodes of the sequence alternate between the two surfaces of the layer of electro-optic material, and have edges which overlap with or lie adjacent the preceding and following electrodes of the sequence. The electrodes, other than the first and last, are electrically isolated such that the potential thereof is controlled by passage of current through the layer of electro-optic material.Type: ApplicationFiled: December 13, 2019Publication date: April 16, 2020Inventors: Richard J. PAOLINI, JR., Stephen BULL, Seth J. BISHOP, Stephen J. TELFER, Karl Raymond AMUNDSON