Patents by Inventor Stephen C. Brown

Stephen C. Brown has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118578
    Abstract: Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of optically switchable devices such as electrochromic devices. Such devices are often provided on windows such as architectural glass. In certain embodiments, the applied drive voltage is controlled in a manner that efficiently drives an optical transition over the entire surface of the electrochromic device. The drive voltage is controlled to account for differences in effective voltage experienced in regions between the bus bars and regions proximate the bus bars. Regions near the bus bars experience the highest effective voltage. In some cases, feedback may be used to monitor an optical transition. In these or other cases, a group of optically switchable devices may transition together over a particular duration to achieve approximately uniform tint states over time during the transition.
    Type: Application
    Filed: October 19, 2023
    Publication date: April 11, 2024
    Inventors: Gordon Jack, Sridhar K. Kailasam, Stephen C. Brown, Anshu A. Pradhan
  • Publication number: 20240103332
    Abstract: This disclosure provides systems, methods, and apparatus for controlling transitions in an optically switchable device. In one aspect, a controller for a tintable window may include a processor, an input for receiving output signals from sensors, and instructions for causing the processor to determine a level of tint of the tintable window, and an output for controlling the level of tint in the tintable window. The instructions may include a relationship between the received output signals and the level of tint, with the relationship employing output signals from an exterior photosensor, an interior photosensor, an occupancy sensor, an exterior temperature sensor, and a transmissivity sensor. In some instances, the controller may receive output signals over a network and/or be interfaced with a network, and in some instances, the controller may be a standalone controller that is not interfaced with a network.
    Type: Application
    Filed: October 13, 2023
    Publication date: March 28, 2024
    Inventors: Stephen C. Brown, Deepika Khowal, Namrata Vora
  • Patent number: 11940705
    Abstract: A method of controlling tint of a tintable window to account for occupant comfort in a room of a building. The tintable window is between the interior and exterior of the building. The method predicts a tint level for the tintable window at a future time based on a penetration depth of direct sunlight through the tintable window into the room at the future time and space type in the room. The method also provides instructions over a network to transition tint of the tintable window to the tint level.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: March 26, 2024
    Assignee: View, Inc.
    Inventors: Stephen C. Brown, Deepika Khowal, Namrata Vora, Santosh V. Philip
  • Patent number: 11927866
    Abstract: Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations. Also described are self-meshing networks for electrochromic windows.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: March 12, 2024
    Assignee: View, Inc.
    Inventors: Stephen C. Brown, Dhairya Shrivastava, Erich R. Klawuhn, Trevor Frank, Douglas Silkwood
  • Patent number: 11835834
    Abstract: Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of optically switchable devices such as electrochromic devices. Such devices are often provided on windows such as architectural glass. In certain embodiments, the applied drive voltage is controlled in a manner that efficiently drives an optical transition over the entire surface of the electrochromic device. The drive voltage is controlled to account for differences in effective voltage experienced in regions between the bus bars and regions proximate the bus bars. Regions near the bus bars experience the highest effective voltage. In some cases, feedback may be used to monitor an optical transition. In these or other cases, a group of optically switchable devices may transition together over a particular duration to achieve approximately uniform tint states over time during the transition.
    Type: Grant
    Filed: October 19, 2022
    Date of Patent: December 5, 2023
    Assignee: View, Inc.
    Inventors: Gordon Jack, Sridhar K. Kailasam, Stephen C. Brown, Anshu A. Pradhan
  • Patent number: 11829045
    Abstract: Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of optically switchable devices such as electrochromic devices. Such devices are often provided on windows such as architectural glass. In certain embodiments, the applied drive voltage is controlled in a manner that efficiently drives an optical transition over the entire surface of the electrochromic device. The drive voltage is controlled to account for differences in effective voltage experienced in regions between the bus bars and regions proximate the bus bars. Regions near the bus bars experience the highest effective voltage. In some cases, feedback may be used to monitor an optical transition. In these or other cases, a group of optically switchable devices may transition together over a particular duration to achieve approximately uniform tint states over time during the transition.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: November 28, 2023
    Assignee: View, Inc.
    Inventors: Gordon Jack, Sridhar K. Kailasam, Stephen C. Brown, Anshu A. Pradhan
  • Patent number: 11822159
    Abstract: Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations. Also described are self-meshing networks for electrochromic windows.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: November 21, 2023
    Assignee: View, Inc.
    Inventors: Stephen C. Brown, Dhairya Shrivastava, Erich R. Klawuhn, Trevor Frank, Douglas S. Silkwood
  • Patent number: 11822202
    Abstract: This disclosure provides systems, methods, and apparatus for controlling transitions in an optically switchable device. In one aspect, a controller for a tintable window may include a processor, an input for receiving output signals from sensors, and instructions for causing the processor to determine a level of tint of the tintable window, and an output for controlling the level of tint in the tintable window. The instructions may include a relationship between the received output signals and the level of tint, with the relationship employing output signals from an exterior photosensor, an interior photosensor, an occupancy sensor, an exterior temperature sensor, and a transmissivity sensor. In some instances, the controller may receive output signals over a network and/or be interfaced with a network, and in some instances, the controller may be a standalone controller that is not interfaced with a network.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: November 21, 2023
    Assignee: View, Inc.
    Inventors: Stephen C. Brown, Deepika Khowal, Namrata Vora
  • Publication number: 20230341741
    Abstract: Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations. Also described are self-meshing networks for electrochromic windows.
    Type: Application
    Filed: June 22, 2023
    Publication date: October 26, 2023
    Inventors: Stephen C. Brown, Dhairya Shrivastava, Erich R. Klawuhn, Trevor Frank, Douglas Silkwood
  • Publication number: 20230333436
    Abstract: Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations. Also described are self-meshing networks for electrochromic windows.
    Type: Application
    Filed: June 22, 2023
    Publication date: October 19, 2023
    Inventors: Stephen C. Brown, Dhairya Shrivastava, Erich R. Klawuhn, Trevor Frank, Douglas Silkwood
  • Publication number: 20230333520
    Abstract: A site monitoring system may analyze information from sites to determine when a device, a sensor, a controller, or other structure associated with optically switchable devices has a problem. The system may, if appropriate, act on the problem. In certain embodiments, the system learns customer/user preferences and adapts its control logic to meet the customer's goals.
    Type: Application
    Filed: June 25, 2023
    Publication date: October 19, 2023
    Inventors: Dhairya Shrivastava, Stephen C. Brown, Vijay Mani
  • Patent number: 11754902
    Abstract: Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations. Also described are self-meshing networks for electrochromic windows.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: September 12, 2023
    Assignee: View, Inc.
    Inventors: Stephen C. Brown, Dhairya Shrivastava, Erich R. Klawuhn, Trevor Frank, Douglas Silkwood
  • Publication number: 20230161213
    Abstract: Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of optically switchable devices such as electrochromic devices. Such devices are often provided on windows such as architectural glass. In certain embodiments, the applied drive voltage is controlled in a manner that efficiently drives an optical transition over the entire surface of the electrochromic device. The drive voltage is controlled to account for differences in effective voltage experienced in regions between the bus bars and regions proximate the bus bars. Regions near the bus bars experience the highest effective voltage.
    Type: Application
    Filed: January 10, 2023
    Publication date: May 25, 2023
    Inventors: Gordon Jack, Sridhar K. Kailasam, Stephen C. Brown, Anshu A. Pradhan
  • Patent number: 11623948
    Abstract: A process for synthesizing and separating secretory IgA from a mixture of IgA monmer and IgA dimer is provided. The process includes covalently binding affinity tagged or epitope tagged recombinant secretory component to the IgA dimer in the mixture and binding the affinity tagged or an epitope tagged secretory IgA to immobilized moieties on the solid phase support resin to which the affinity tag or epitope tag binds and then eluting the affinity tagged or an epitope tagged secretory IgA with release buffer. A process for synthesizing and separating secretory IgM from a mixture of IgM and other plasma proteins is also provided. The process includes covalently binding affinity tagged or an epitope tagged recombinant secretory component to the IgM in the mixture and binding the affinity tagged or an epitope tagged secretory IgM to immobilized moieties on the solid phase support resin and then eluting the peptide tagged secretory IgM with a release buffer.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: April 11, 2023
    Inventors: Stephen C. Brown, Michael R. Simon
  • Publication number: 20230108776
    Abstract: Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of optically switchable devices such as electrochromic devices. Such devices are often provided on windows such as architectural glass. In certain embodiments, the applied drive voltage is controlled in a manner that efficiently drives an optical transition over the entire surface of the electrochromic device. The drive voltage is controlled to account for differences in effective voltage experienced in regions between the bus bars and regions proximate the bus bars. Regions near the bus bars experience the highest effective voltage. In some cases, feedback may be used to monitor an optical transition. In these or other cases, a group of optically switchable devices may transition together over a particular duration to achieve approximately uniform tint states over time during the transition.
    Type: Application
    Filed: October 19, 2022
    Publication date: April 6, 2023
    Inventors: Gordon Jack, Sridhar K. Kailasam, Stephen C. Brown, Anshu A. Pradhan
  • Patent number: 11579509
    Abstract: Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of optically switchable devices such as electrochromic devices. Such devices are often provided on windows such as architectural glass. In certain embodiments, the applied drive voltage is controlled in a manner that efficiently drives an optical transition over the entire surface of the electrochromic device. The drive voltage is controlled to account for differences in effective voltage experienced in regions between the bus bars and regions proximate the bus bars. Regions near the bus bars experience the highest effective voltage.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: February 14, 2023
    Assignee: View, Inc.
    Inventors: Gordon Jack, Sridhar K. Kailasam, Stephen C. Brown, Anshu A. Pradhan
  • Patent number: 11520207
    Abstract: This disclosure provides systems, methods, and apparatus for controlling transitions in an optically switchable device. In one aspect, a controller for a tintable window may include a processor, an input for receiving output signals from sensors, and instructions for causing the processor to determine a level of tint of the tintable window, and an output for controlling the level of tint in the tintable window. The instructions may include a relationship between the received output signals and the level of tint, with the relationship employing output signals from an exterior photosensor, an interior photosensor, an occupancy sensor, an exterior temperature sensor, and a transmissivity sensor. In some instances, the controller may receive output signals over a network and/or be interfaced with a network, and in some instances, the controller may be a standalone controller that is not interfaced with a network.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: December 6, 2022
    Assignee: View, Inc.
    Inventors: Stephen C. Brown, Dhairya Shrivastava, Anshu A. Pradhan, Deepika Khowal, Namrata Vora
  • Publication number: 20220365399
    Abstract: Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations. Also described are self-meshing networks for electrochromic windows.
    Type: Application
    Filed: August 1, 2022
    Publication date: November 17, 2022
    Inventors: Stephen C. Brown, Dhairya Shrivastava, Erich R. Klawuhn, Trevor Frank, Douglas Silkwood
  • Patent number: 11445025
    Abstract: Software applications are used for controlling the optical state of one or more optically switchable windows or other optical products installed in a structure such as building. The applications permit users to send and/or receive data and/or commands for controlling the switchable optical products. In some embodiments, the applications provide an interface with a window network controller, which directly or indirectly controls windows in a structure. Relevant processing involving the application may include user authentication, commissioning, adaptive control, and decisions on whether to permit an action or change requested by a user. In some embodiments, the application allows users to directly control the tint state of one or more tintable windows. In some embodiments, the application allows users to change a rule or property associated with controlling a switchable optical product.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: September 13, 2022
    Assignee: View, Inc.
    Inventors: Dhairya Shrivastava, Todd Marques, Stephen C. Brown
  • Publication number: 20220244098
    Abstract: Certain aspects pertain to a combination sensor comprising a set of physical sensors facing different directions proximate a structure, and configured to measure solar radiation in different directions. The combination sensor also comprises a virtual facade-aligned sensor configured to determine a combi-sensor value at a facade of the structure based on solar radiation readings from the set of physical sensors.
    Type: Application
    Filed: April 25, 2022
    Publication date: August 4, 2022
    Applicant: View, Inc.
    Inventors: Erich R. Klawuhn, Douglas S. Silkwood, Jason Zedlitz, Stephen C. Brown, Dhairya Shrivastava