Patents by Inventor Stephen C. Crouch

Stephen C. Crouch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11016197
    Abstract: A LIDAR system includes a laser source, a first scanner, and a second scanner. The first scanner receives a first beam from the laser source and applies a first angle modulation to the first beam to output a second beam at a first angle. The second scanner receives the second beam and applies a second angle modulation to the second beam to output a third beam at a second angle.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: May 25, 2021
    Assignee: AURORA INNOVATION, INC.
    Inventors: Zeb William Barber, Stephen C. Crouch, Ryan Moore Galloway, Edward Joseph Angus, Emil Kadlec
  • Patent number: 11002837
    Abstract: A system and method for sidelobe suppression in phase-encoded Doppler LIDAR to support the operation of a vehicle includes determining a sequence code that is indicative of a sequence of phases for an optical signal; modulating an optical signal based on the sequence code to produce a phase-encoded optical signal; transmitting the phase-encoded optical signal to an environment; receiving, from the environment, a returned optical signal in response to transmitting the phase-encoded optical signal; generating, based on the returned optical signal, an electrical signal; and determine a Doppler frequency shift in the returned optical signal.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: May 11, 2021
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC.
    Inventors: Zeb William Barber, Stephen C. Crouch, Emil A. Kadlec
  • Publication number: 20210072381
    Abstract: A system and method for enhanced velocity resolution and signal to noise ratio in optical phase-encoded range detection includes receiving an electrical signal generated by mixing a first optical signal and a second optical signal, wherein the first optical signal is generated by modulating an optical signal, wherein and the second optical signal is received in response to transmitting the first optical signal toward an object, and determining a Doppler frequency shift of the second optical signal, and generating a corrected electrical signal by adjusting the electrical signal based on the Doppler frequency shift, and determining a range to the object based on a cross correlation of the corrected electrical signal with a radio frequency (RF) signal that is associated with the first optical signal.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 11, 2021
    Applicant: Blackmore Sensors & Analytics, LLC
    Inventors: Stephen C. Crouch, Zeb William Barber, Emil Kadlec, Krishna Rupavatharam
  • Patent number: 10921452
    Abstract: Techniques for optimizing a scan pattern of a LIDAR system including a bistatic transceiver include receiving first SNR values based on values of a range of the target, where the first SNR values are for a respective scan rate. Techniques further include receiving second SNR values based on values of the range of the target, where the second SNR values are for a respective integration time. Techniques further include receiving a maximum design range of the target at each angle in the angle range. Techniques further include determining, for each angle in the angle range, a maximum scan rate and a minimum integration time. Techniques further include defining a scan pattern of the LIDAR system based on the maximum scan rate and the minimum integration time at each angle and operating the LIDAR system according to the scan pattern.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: February 16, 2021
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Stephen C. Crouch, Edward Angus, Michelle Milvich
  • Patent number: 10914841
    Abstract: Techniques for controlling an autonomous vehicle with a processor that controls operation, includes operating a Doppler LIDAR system to collect point cloud data that indicates for each point at least four dimensions including an inclination angle, an azimuthal angle, a range, and relative speed between the point and the LIDAR system. A value of a property of an object in the point cloud is determined based on only three or fewer of the at least four dimensions. In some of embodiments, determining the value of the property of the object includes isolating multiple points in the point cloud data which have high value Doppler components. A moving object within the plurality of points is determined based on a cluster by azimuth and Doppler component values.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: February 9, 2021
    Assignee: BLACKMORE SENSORS AND ANALYTICS, LLC
    Inventors: Stephen C. Crouch, Devlin Baker
  • Publication number: 20210025987
    Abstract: An apparatus include a motor, a first scanner, and a second scanner. The first scanner is coupled to the motor, and the motor is configured to rotate the first scanner at a first angular velocity about a rotation axis to deflect a first beam incident in a third plane on the first scanner into a first plane different from the third plane. The second scanner is coupled to the motor, and the motor is configured to rotate the second scanner at a second angular velocity different from the first angular velocity about the rotation axis to deflect a second beam incident in the third plane on the second scanner into a second plane different from the third plane.
    Type: Application
    Filed: October 8, 2020
    Publication date: January 28, 2021
    Applicant: BALCKMORE SENSORS & ANALYTICS, LLC
    Inventors: Stephen C. Crouch, Edward Joseph ANGUS, Michelle MILVICH
  • Publication number: 20210018604
    Abstract: A system and method for sidelobe suppression in phase-encoded Doppler LIDAR to support the operation of a vehicle includes determining a sequence code that is indicative of a sequence of phases for an optical signal; modulating an optical signal based on the sequence code to produce a phase-encoded optical signal; transmitting the phase-encoded optical signal to an environment; receiving, from the environment, a returned optical signal in response to transmitting the phase-encoded optical signal; generating, based on the returned optical signal, an electrical signal; and determine a Doppler frequency shift in the returned optical signal.
    Type: Application
    Filed: July 14, 2020
    Publication date: January 21, 2021
    Applicant: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Zeb William Barber, Stephen C. Crouch, Emil A. Kadlec
  • Patent number: 10866312
    Abstract: A method is presented for optimizing a scan pattern of a LIDAR system on an autonomous vehicle. The method includes receiving first SNR values based on values of a range of the target, where the first SNR values are for a respective scan rate. The method further includes receiving second SNR values based on values of the range of the target, where the second SNR values are for a respective integration time. The method further includes receiving a maximum design range of the target at each angle in the angle range. The method further includes determining, for each angle in the angle range, a maximum scan rate and a minimum integration time. The method further includes defining a scan pattern of the LIDAR system based on the maximum scan rate and the minimum integration time at each angle and operating the LIDAR system according to the scan pattern.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: December 15, 2020
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC.
    Inventors: Stephen C. Crouch, Edward Joseph Angus, Michelle Milvich
  • Publication number: 20200386875
    Abstract: A LIDAR system including one or more processors configured to receive a plurality of electrical signals that are respectively associated with (i) a plurality of optical signals provided by a laser and (ii) a plurality of returned optical signals that are responsive to the plurality of optical signals provided by the laser; determine an internal reflection signal; determine a range to an object by adjusting a third electrical signal of the plurality of electrical signals using the internal reflection signal; and operate a vehicle based on the determined range to the object.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Inventors: Stephen C. Crouch, Emil Kadlec, Krishna Rupavatharam
  • Patent number: 10838061
    Abstract: A system and method for enhanced velocity resolution and signal to noise ratio in optical phase-encoded range detection includes receiving an electrical signal generated by mixing a first optical signal and a second optical signal, wherein the first optical signal is generated by modulating an optical signal, wherein and the second optical signal is received in response to transmitting the first optical signal toward an object, and determining a Doppler frequency shift of the second optical signal, and generating a corrected electrical signal by adjusting the electrical signal based on the Doppler frequency shift, and determining a range to the object based on a cross correlation of the corrected electrical signal with a radio frequency (RF) signal that is associated with the first optical signal.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: November 17, 2020
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC.
    Inventors: Stephen C. Crouch, Zeb William Barber, Emil A. Kadlec, Krishna Rupavatharam
  • Patent number: 10838045
    Abstract: An apparatus include a motor, a first scanner, and a second scanner. The first scanner is coupled to the motor, and the motor is configured to rotate the first scanner at a first angular velocity about a rotation axis to deflect a first beam incident in a third plane on the first scanner into a first plane different from the third plane. The second scanner is coupled to the motor, and the motor is configured to rotate the second scanner at a second angular velocity different from the first angular velocity about the rotation axis to deflect a second beam incident in the third plane on the second scanner into a second plane different from the third plane.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: November 17, 2020
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC.
    Inventors: Stephen C. Crouch, Edward Joseph Angus, Michelle Milvich
  • Publication number: 20200326427
    Abstract: An apparatus include a motor, a first scanner, and a second scanner. The first scanner is coupled to the motor, and the motor is configured to rotate the first scanner at a first angular velocity about a rotation axis to deflect a first beam incident in a third plane on the first scanner into a first plane different from the third plane. The second scanner is coupled to the motor, and the motor is configured to rotate the second scanner at a second angular velocity different from the first angular velocity about the rotation axis to deflect a second beam incident in the third plane on the second scanner into a second plane different from the third plane.
    Type: Application
    Filed: October 1, 2019
    Publication date: October 15, 2020
    Inventors: Stephen C. CROUCH, Edward Joseph ANGUS, Michelle MILVICH
  • Patent number: 10768282
    Abstract: A system and method for optical detection in autonomous vehicles includes modulating an optical signal from a laser to generate a modulated optical signal and transmitting the modulated optical signal toward an object. The system and method include receiving, responsive to transmitting the modulated optical signal, a returned optical signal and mixing the returned optical signal with a reference optical signal associated with the optical signal from the laser to generate a mixed optical signal and detecting the mixed optical signal to generate an electrical signal. Based on the electrical signal and the modulated optical signal, a parameter of an internal reflection of the returned optical signal from one or more optical components is determined, which may be used to operate a vehicle.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: September 8, 2020
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Stephen C. Crouch, Emil Kadlec, Krishna Rupavatharam
  • Publication number: 20200256994
    Abstract: An apparatus is provided for using a square wave digital chirp signal for optical chirp range detection. A laser source emits an optical signal and a RF waveform generator generates an input digital chirp signal based on the square wave digital chirp signal. A frequency of the optical signal is modulated based on the input digital chirp signal. A splitter divides the optical signal into a transmit optical signal and a reference optical signal. A detector combines the reference optical signal and a return optical signal from an object. The detector generates an electrical output signal based on the combined reference optical signal and the return optical signal. A processor determines a range to the object based on a characteristic of a Fourier transform the electrical output signal. A method is also provided for using the square wave digital chirp signal for optical chirp range detection.
    Type: Application
    Filed: April 28, 2020
    Publication date: August 13, 2020
    Applicant: Blackmore Sensors & Analytics, LLC
    Inventors: Stephen C. Crouch, James Curry, Trenton Berg, Richard Funk, Kyle Oliver, Daniel Ferguson
  • Patent number: 10670720
    Abstract: An apparatus is provided for using a square wave digital chirp signal for optical chirp range detection. A laser source emits an optical signal and a RF waveform generator generates an input digital chirp signal based on the square wave digital chirp signal. A frequency of the optical signal is modulated based on the input digital chirp signal. A splitter divides the optical signal into a transmit optical signal and a reference optical signal. A detector combines the reference optical signal and a return optical signal from an object. The detector generates an electrical output signal based on the combined reference optical signal and the return optical signal. A processor determines a range to the object based on a characteristic of a Fourier transform the electrical output signal. A method is also provided for using the square wave digital chirp signal for optical chirp range detection.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: June 2, 2020
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Stephen C. Crouch, James Curry, Trenton Berg, Richard Funk, Kyle Oliver, Daniel Ferguson
  • Publication number: 20200166647
    Abstract: An apparatus is provided that includes a LIDAR system with a waveguide array arranged in a first plane. The waveguide array is configured to generate a plurality of beams where each beam is transmitted from a respective waveguide in the array. The apparatus also includes a collimator configured to shape the plurality of beams into a fan of collimated beams having an angular spread in the first plane. Additionally, the apparatus includes a polygon scanner configured to adjust a direction of the fan in a second plane that is different than the first plane. A method is also provided employing the apparatus.
    Type: Application
    Filed: December 23, 2019
    Publication date: May 28, 2020
    Inventors: Stephen C. Crouch, Edward Joseph Angus, Michelle Milvich
  • Publication number: 20200166617
    Abstract: A method is presented for optimizing a scan pattern of a LIDAR system on an autonomous vehicle. The method includes receiving first SNR values based on values of a range of the target, where the first SNR values are for a respective scan rate. The method further includes receiving second SNR values based on values of the range of the target, where the second SNR values are for a respective integration time. The method further includes receiving a maximum design range of the target at each angle in the angle range. The method further includes determining, for each angle in the angle range, a maximum scan rate and a minimum integration time. The method further includes defining a scan pattern of the LIDAR system based on the maximum scan rate and the minimum integration time at each angle and operating the LIDAR system according to the scan pattern.
    Type: Application
    Filed: December 23, 2019
    Publication date: May 28, 2020
    Inventors: Stephen C. Crouch, Edward Joseph Angus, Michelle Milvich
  • Publication number: 20200150251
    Abstract: A system and method for optical detection in autonomous vehicles includes modulating an optical signal from a laser to generate a modulated optical signal and transmitting the modulated optical signal toward an object. The system and method include receiving, responsive to transmitting the modulated optical signal, a returned optical signal and mixing the returned optical signal with a reference optical signal associated with the optical signal from the laser to generate a mixed optical signal and detecting the mixed optical signal to generate an electrical signal. Based on the electrical signal and the modulated optical signal, a parameter of an internal reflection of the returned optical signal from one or more optical components is determined, which may be used to operate a vehicle.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 14, 2020
    Inventors: Stephen C. CROUCH, Emil Kadlec, Krishna Rupavatharam
  • Publication number: 20200142068
    Abstract: Techniques for optimizing a scan pattern of a LIDAR system including a bistatic transceiver include receiving first SNR values based on values of a range of the target, where the first SNR values are for a respective scan rate. Techniques further include receiving second SNR values based on values of the range of the target, where the second SNR values are for a respective integration time. Techniques further include receiving a maximum design range of the target at each angle in the angle range. Techniques further include determining, for each angle in the angle range, a maximum scan rate and a minimum integration time. Techniques further include defining a scan pattern of the LIDAR system based on the maximum scan rate and the minimum integration time at each angle and operating the LIDAR system according to the scan pattern.
    Type: Application
    Filed: January 7, 2020
    Publication date: May 7, 2020
    Inventors: Stephen C. Crouch, Edward Angus, Michelle Milvich
  • Publication number: 20200132850
    Abstract: Techniques for controlling an autonomous vehicle with a processor that controls operation, includes operating a Doppler LIDAR system to collect point cloud data that indicates for each point at least four dimensions including an inclination angle, an azimuthal angle, a range, and relative speed between the point and the LIDAR system. A value of a property of an object in the point cloud is determined based on only three or fewer of the at least four dimensions. In some of embodiments, determining the value of the property of the object includes isolating multiple points in the point cloud data which have high value Doppler components. A moving object within the plurality of points is determined based on a cluster by azimuth and Doppler component values.
    Type: Application
    Filed: December 23, 2019
    Publication date: April 30, 2020
    Inventors: Stephen C. Crouch, Devlin Baker