Patents by Inventor Stephen D. Hersee

Stephen D. Hersee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9142400
    Abstract: A method for making a heteroepitaxial layer. The method comprises providing a semiconductor substrate. A seed area delineated with a selective growth mask is formed on the semiconductor substrate. The seed area comprises a first material and has a linear surface dimension of less than 100 nm. A heteroepitaxial layer is grown on the seed area, the heteroepitaxial layer comprising a second material that is different from the first material. Devices made by the method are also disclosed.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: September 22, 2015
    Assignee: STC.UNM
    Inventors: Steven R. J. Brueck, Stephen D. Hersee, Seung-Chang Lee, Daniel Feezell
  • Patent number: 9106056
    Abstract: According to various embodiments, the present teachings include an array of nanowire devices. The array of nanowire devices comprises a readout integrated circuit (ROIC). An LED array is disposed on the ROIC. The LED array comprises a plurality of LED core-shell structures, with each LED core-shell structure comprising a layered shell enveloping a nanowire core, wherein the layered shell comprises a multi-quantum-well (MQW) active region. The LED array further comprises a p-side electrode enveloping the layered core-shell structure and electrically connecting the ROIC, wherein each p-side electrode has an average thickness ranging from about 100 nm to about 500 nm. A dielectric layer is disposed on the plurality of LED core-shell structures, with each nanowire core disposed through the dielectric to connect with an n-side semiconductor that is situated on the dielectric.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: August 11, 2015
    Assignee: STC.UNM
    Inventor: Stephen D. Hersee
  • Publication number: 20150124076
    Abstract: Exemplary embodiments provide solid-state microscope (SSM) devices and methods for processing and using the SSM devices. The solid-state microscope devices can include a light emitter array having a plurality of light emitters with each light emitter individually addressable. During operation, each light emitter can be biased in one of three operating states including an emit state, a detect state, and an off state. The light emitter can include an LED (light emitting diode) including, but not limited to, a nanowire based LED or a planar LED to provide various desired image resolutions for the SSM devices. In an exemplary embodiment, for near-field microscopy, the resolution of the SSM microscope can be essentially defined by the pitch p, i.e., center-to-center spacing between two adjacent light emitters, of the light emitter array.
    Type: Application
    Filed: January 7, 2015
    Publication date: May 7, 2015
    Inventor: Stephen D. Hersee
  • Patent number: 8964020
    Abstract: Exemplary embodiments provide solid-state microscope (SSM) devices and methods for processing and using the SSM devices. The solid-state microscope devices can include a light emitter array having a plurality of light emitters with each light emitter individually addressable. During operation, each light emitter can be biased in one of three operating states including an emit state, a detect state, and an off state. The light emitter can include an LED (light emitting diode) including, but not limited to, a nanowire based LED or a planar LED to provide various desired image resolutions for the SSM devices. In an exemplary embodiment, for near-field microscopy, the resolution of the SSM microscope can be essentially defined by the pitch p, i.e., center-to-center spacing between two adjacent light emitters, of the light emitter array.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: February 24, 2015
    Assignee: STC.UNM
    Inventor: Stephen D. Hersee
  • Patent number: 8866125
    Abstract: Various embodiments provide materials and methods for integrating exemplary heterostructure field-effect transistor (HFET) driver circuit or thyristor driver circuit with LED structures to reduce or eliminate resistance and/or inductance associated with their conventional connections.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: October 21, 2014
    Assignee: STC.UNM
    Inventor: Stephen D. Hersee
  • Patent number: 8716045
    Abstract: Exemplary embodiments provide semiconductor devices including high-quality (i.e., defect free) group III-N nanowires and uniform group III-N nanowire arrays as well as their scalable processes for manufacturing, where the position, orientation, cross-sectional features, length and the crystallinity of each nanowire can be precisely controlled. A pulsed growth mode can be used to fabricate the disclosed group III-N nanowires and/or nanowire arrays providing a uniform length of about 10 nm to about 1000 microns with constant cross-sectional features including an exemplary diameter of about 10-1000 nm. In addition, high-quality GaN substrate structures can be formed by coalescing the plurality of GaN nanowires and/or nanowire arrays to facilitate the fabrication of visible LEDs and lasers. Furthermore, core-shell nanowire/MQW active structures can be formed by a core-shell growth on the nonpolar sidewalls of each nanowire.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: May 6, 2014
    Assignee: STC.UNM
    Inventors: Stephen D Hersee, Xin Wang, Xinyu Sun
  • Patent number: 8658519
    Abstract: Various embodiments provide non-planar nanowires, nanowire arrays, and nanowire networks as well as methods of their formation and applications. The non-planar nanowires and their arrays can be formed in a controlled manner on surfaces having a non-planar orientation. In embodiments, two or more adjacent nanowires from different surfaces can grow to merge together forming one or more nanowire branches and thus forming a nanowire network. In embodiments, the non-planar nanowires and nanowire networks can be used for cantilever oscillation, switching and transistor actions.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: February 25, 2014
    Assignee: STC.UNM
    Inventor: Stephen D. Hersee
  • Patent number: 8624968
    Abstract: Exemplary embodiments provide microscope devices and methods for forming and using the microscope devices. The microscope device can include a light emitter array with each light emitter individually addressable to either emit or detect light signals. Magnified images of a sample object can be generated by a reflection mechanism and/or a transmission mechanism using one or more microscope devices in an imaging system. Real-time computer control of which microscope pixels are viewed can allow the user to digitally replicate the “fovea” function of human vision. Viewing an object from both sides in the double-sided microscope system and from multiple pixel positions can allow the microscope to reconstruct pseudo-3D images of the object.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: January 7, 2014
    Assignee: STC.UNM
    Inventors: Stephen D. Hersee, Majeed M. Hayat, Pradeep Sen
  • Publication number: 20130240832
    Abstract: Various embodiments provide materials and methods for integrating exemplary heterostructure field-effect transistor (HFET) driver circuit or thyristor driver circuit with LED structures to reduce or eliminate resistance and/or inductance associated with their conventional connections.
    Type: Application
    Filed: May 1, 2013
    Publication date: September 19, 2013
    Applicant: STC.UNM
    Inventor: Stephen D. Hersee
  • Patent number: 8455856
    Abstract: Various embodiments provide materials and methods for integrating exemplary heterostructure field-effect transistor (HFET) driver circuit or thyristor driver circuit with LED structures to reduce or eliminate resistance and/or inductance associated with their conventional connections.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: June 4, 2013
    Assignee: STC.UNM
    Inventor: Stephen D. Hersee
  • Patent number: 8410496
    Abstract: Exemplary embodiments provide semiconductor devices including high-quality (i.e., defect free) group III-N nanowires and uniform group III-N nanowire arrays as well as their scalable processes for manufacturing, where the position, orientation, cross-sectional features, length and the crystallinity of each nanowire can be precisely controlled. A pulsed growth mode can be used to fabricate the disclosed group III-N nanowires and/or nanowire arrays providing a uniform length of about 10 nm to about 1000 microns with constant cross-sectional features including an exemplary diameter of about 10-1000 nm. In addition, high-quality GaN substrate structures can be formed by coalescing the plurality of GaN nanowires and/or nanowire arrays to facilitate the fabrication of visible LEDs and lasers. Furthermore, core-shell nanowire/MQW active structures can be formed by a core-shell growth on the nonpolar sidewalls of each nanowire.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: April 2, 2013
    Assignee: STC.UNM
    Inventors: Stephen D. Hersee, Xin Wang, Xinyu Sun
  • Patent number: 8343823
    Abstract: Nanowire and larger, post-based HEMTs, arrays of such HEMTs, and methods for their manufacture are provided. In one embodiment, a HEMT can include a III-N based core-shell structure including a core member (e.g., GaN), a shell member (e.g., AlGaN) surrounding a length of the core member and a two-dimensional electron gas (2-DEG) at the interface therebetween. The core member including a nanowire and/or a post can be disposed over a doped buffer layer and a gate material can be disposed around a portion of the shell member. Exemplary methods for making the nanowire HEMTs and arrays of nanowire HEMTs can include epitaxially forming nanowire(s) and epitaxially forming a shell member from each formed nanowire. Exemplary methods for making the post HEMTs and arrays of post HEMTs can include etching a III-N layer to form III-N post(s) followed by formation of the shell member(s).
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: January 1, 2013
    Assignee: STC.UNM
    Inventors: Stephen D. Hersee, Xin Wang
  • Patent number: 8338818
    Abstract: Various embodiments provide non-planar nanowires, nanowire arrays, and nanowire networks as well as methods of their formation and applications. The non-planar nanowires and their arrays can be formed in a controlled manner on surfaces having a non-planar orientation. In embodiments, two or more adjacent nanowires from different surfaces can grow to merge together forming one or more nanowire branches and thus forming a nanowire network. In embodiments, the non-planar nanowires and nanowire networks can be used for cantilever oscillation, switching and transistor actions.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: December 25, 2012
    Assignee: STC.UNM
    Inventor: Stephen D. Hersee
  • Publication number: 20120225526
    Abstract: Nanowire and larger, post-based HEMTs, arrays of such HEMTs, and methods for their manufacture are provided. In one embodiment, a HEMT can include a III-N based core-shell structure including a core member (e.g., GaN), a shell member (e.g., AlGaN) surrounding a length of the core member and a two-dimensional electron gas (2-DEG) at the interface therebetween. The core member including a nanowire and/or a post can be disposed over a doped buffer layer and a gate material can be disposed around a portion of the shell member. Exemplary methods for making the nanowire HEMTs and arrays of nanowire HEMTs can include epitaxially forming nanowire(s) and epitaxially forming a shell member from each formed nanowire. Exemplary methods for making the post HEMTs and arrays of post HEMTs can include etching a III-N layer to form III-N post(s) followed by formation of the shell member(s).
    Type: Application
    Filed: May 1, 2012
    Publication date: September 6, 2012
    Applicant: STC.UNM
    Inventors: Stephen D. Hersee, Xin Wang
  • Patent number: 8188513
    Abstract: Nanowire and larger, post-based HEMTs, arrays of such HEMTs, and methods for their manufacture are provided. In one embodiment, a HEMT can include a III-N based core-shell structure including a core member (e.g., GaN), a shell member (e.g., AlGaN) surrounding a length of the core member and a two-dimensional electron gas (2-DEG) at the interface therebetween. The core member including a nanowire and/or a post can be disposed over a doped buffer layer and a gate material can be disposed around a portion of the shell member. Exemplary methods for making the nanowire HEMTs and arrays of nanowire HEMTs can include epitaxially forming nanowire(s) and epitaxially forming a shell member from each formed nanowire. Exemplary methods for making the post HEMTs and arrays of post HEMTs can include etching a III-N layer to form III-N post(s) followed by formation of the shell member(s).
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: May 29, 2012
    Assignee: STC.UNM
    Inventors: Stephen D. Hersee, Xin Wang
  • Publication number: 20120001153
    Abstract: Exemplary embodiments provide semiconductor devices including high-quality (i.e., defect free) group III-N nanowires and uniform group III-N nanowire arrays as well as their scalable processes for manufacturing, where the position, orientation, cross-sectional features, length and the crystallinity of each nanowire can be precisely controlled. A pulsed growth mode can be used to fabricate the disclosed group III-N nanowires and/or nanowire arrays providing a uniform length of about 10 nm to about 1000 microns with constant cross-sectional features including an exemplary diameter of about 10-1000 nm. In addition, high-quality GaN substrate structures can be formed by coalescing the plurality of GaN nanowires and/or nanowire arrays to facilitate the fabrication of visible LEDs and lasers. Furthermore, core-shell nanowire/MQW active structures can be formed by a core-shell growth on the nonpolar sidewalls of each nanowire.
    Type: Application
    Filed: September 13, 2011
    Publication date: January 5, 2012
    Applicant: STC. UNM
    Inventors: Stephen D. Hersee, Xin Wang, Xinyu Sun
  • Patent number: 8039854
    Abstract: Exemplary embodiments provide semiconductor devices including high-quality (i.e., defect free) group III-N nanowires and uniform group III-N nanowire arrays as well as their scalable processes for manufacturing, where the position, orientation, cross-sectional features, length and the crystallinity of each nanowire can be precisely controlled. A pulsed growth mode can be used to fabricate the disclosed group III-N nanowires and/or nanowire arrays providing a uniform length of about 10 nm to about 1000 microns with constant cross-sectional features including an exemplary diameter of about 10-1000 nm. In addition, high-quality GaN substrate structures can be formed by coalescing the plurality of GaN nanowires and/or nanowire arrays to facilitate the fabrication of visible LEDs and lasers. Furthermore, core-shell nanowire/MQW active structures can be formed by a core-shell growth on the nonpolar sidewalls of each nanowire.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: October 18, 2011
    Assignee: STC.UNM
    Inventors: Stephen D. Hersee, Xin Wang, Xinyu Sun
  • Publication number: 20110169012
    Abstract: Nanowire and larger, post-based HEMTs, arrays of such HEMTs, and methods for their manufacture are provided. In one embodiment, a HEMT can include a III-N based core-shell structure including a core member (e.g., GaN), a shell member (e.g., AlGaN) surrounding a length of the core member and a two-dimensional electron gas (2-DEG) at the interface therebetween. The core member including a nanowire and/or a post can be disposed over a doped buffer layer and a gate material can be disposed around a portion of the shell member. Exemplary methods for making the nanowire HEMTs and arrays of nanowire HEMTs can include epitaxially forming nanowire(s) and epitaxially forming a shell member from each formed nanowire. Exemplary methods for making the post HEMTs and arrays of post HEMTs can include etching a III-N layer to form II-N post(s) followed by formation of the shell member(s).
    Type: Application
    Filed: October 6, 2008
    Publication date: July 14, 2011
    Inventors: Stephen D. Hersee, Xin Wang
  • Patent number: 7968359
    Abstract: Various embodiments provide thin-walled structures and methodologies for their formation. In one embodiment, the thin-walled structure can be formed by disposing a semiconductor material in a patterned aperture using a selective growth mask that includes a plurality of patterned apertures, followed by a continuous growth of the semiconductor material using a pulsed growth mode. The patterned aperture can include at least one lateral dimension that is small enough to allow a threading defect termination at sidewall(s) of the formed thin-walled structure. In addition, high-quality III-N substrate structures and core-shell MQW active structures can be formed from the thin-walled structures for use in devices like light emitting diodes (LEDs), lasers, or high electron mobility transistors (HEMTs).
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: June 28, 2011
    Assignee: STC.UNM
    Inventor: Stephen D. Hersee
  • Publication number: 20100276664
    Abstract: Various embodiments provide thin-walled structures and methodologies for their formation. In one embodiment, the thin-walled structure can be formed by disposing a semiconductor material in a patterned aperture using a selective growth mask that includes a plurality of patterned apertures, followed by a continuous growth of the semiconductor material using a pulsed growth mode. The patterned aperture can include at least one lateral dimension that is small enough to allow a threading defect termination at sidewall(s) of the formed thin-walled structure. In addition, high-quality III-N substrate structures and core-shell MQW active structures can be formed from the thin-walled structures for use in devices like light emitting diodes (LEDs), lasers, or high electron mobility transistors (HEMTs).
    Type: Application
    Filed: September 25, 2008
    Publication date: November 4, 2010
    Inventor: Stephen D. Hersee