Patents by Inventor Stephen D. Russell

Stephen D. Russell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8211730
    Abstract: A method for manufacture of a nanophotonic device can include the step of operatively coupling a planar light source and a photodetector with an optical waveguide. The planar light source, photodetector and optical waveguide can then be monolithically integrated in direct contact with a sapphire substrate, along with an electronic component that is also in direct contact with the sapphire substrate.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: July 3, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Serey Thai, Paul R. de la Houssaye, Randy L. Shimabukuro, Stephen D. Russell
  • Patent number: 8210289
    Abstract: A microbot includes a spherical housing, first and second servomotors that are located internal to the housing and oriented horizontally and orthogonal to each other, and a plunger within the housing that selectively extends in the vertical direction. Castors are attached to each servomotor; and traction balls corresponding to each castor are placed so that each ball frictionally engages both a respective castor and the interior of the housing at the same time. As the servomotors rotate, the attached castors also rotate, which causes rotation of the traction balls and rolling of the housing, and results in translation of the microbot in the horizontal plane. As the plunger rapidly extends, it strikes the interior surface of the housing with sufficient force to cause a hopping motion of the microbot in the vertical direction.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: July 3, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Ryan P. Lu, Ayax D. Ramirez, Stephen D. Russell
  • Patent number: 8178429
    Abstract: Fabrication of a semiconductor structure is achieved by using a Dip Pen Nanolithography (DPN) tip to apply a metal catalyst to a prepared substrate. The catalyst is applied in a predetermined pattern, and crystal growth is established at the catalyst site.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: May 15, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Ryan P. Lu, Ayax D. Ramirez, Stephen D. Russell
  • Patent number: 8111443
    Abstract: A plasmonic transistor device includes an electro-optic substrate and a conductive layer placed on said electro-optic substrate to establish an interface therebetween. The first conductive layer and electro-optics substrate are made of materials that are suitable for transmission of a surface plasmon along the interface. The conductive layer is further formed with a source input grating and a drain output grating, for establishing the surface plasmon. A means for varying the electro-optic substrate permittivity, such as a light source or voltage source, is connected to the electro-optic substrate. Selective manipulation of the varying means allows the user to selectively increase or decrease the substrate permittivity. Control of the substrate permittivity further allows the user to control surface plasmon propagation from the source input grating along the interface to a drain output grating, to achieve a transistor-like effect for the surface plasmon.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: February 7, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Stephen D. Russell, Joanna N. Ptasinski
  • Patent number: 8085459
    Abstract: A plasmonic transistor device includes an electro-optic substrate and a conductive layer placed on said electro-optic substrate to establish an interface therebetween. The first conductive layer and electro-optics substrate are made of materials that are suitable for transmission of a surface plasmon along the interface. The conductive layer is further formed with a source input grating and a drain output grating, for establishing the surface plasmon. A means for varying the electro-optic substrate permittivity, such as a light source or voltage source, is connected to the electro-optic substrate. Selective manipulation of the varying means allows the user to selectively increase or decrease the substrate permittivity. Control of the substrate permittivity further allows the user to control surface plasmon propagation from the source input grating along the interface to a drain output grating, to achieve a transistor-like effect for the surface plasmon.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: December 27, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Stephen D. Russell, Joanna N. Ptasinski
  • Patent number: 8063473
    Abstract: A nanophotonic device. The device includes a substrate, at least one light emitting structure and at least one electronic component. The at least one light emitting structure is capable of transmitting light and is monolithically integrated on the substrate. The at least one electronic component is monolithically integrated on the substrate. A method for fabricating nanophotonic devices is also described.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: November 22, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Serey Thai, Paul R. de la Houssaye, Randy L. Shimabukuro, Stephen D. Russell
  • Patent number: 8057388
    Abstract: A microsensor array system, comprising a pad, a plurality of actuators attached to the pad, and a plurality of microprobes, wherein substantially each microprobe in the plurality of microprobes is attached to a respective actuator in the plurality of actuators.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: November 15, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Stephen D. Russell, Paul R. de la Houssaye, Jamie K. Pugh, William Pugh, Dennis E. Amundson, Howard W. Walker
  • Patent number: 7906401
    Abstract: A method of tuning threshold voltages of interdiffusible structures. The method includes a step of situating an interdiffusible structure in a path of a laser and a step of illuminating the interdiffusible structure with laser energy until a desired threshold voltage is obtained.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: March 15, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Ryan P. Lu, Ayax D. Ramirez, Bruce W. Offord, Stephen D. Russell
  • Patent number: 7891078
    Abstract: A method of improving efficiency of manufacturing a vacuum electronic device, includes placing sensors on the device's interior during its construction and obtaining a first measured characteristic value; comparing the first measured characteristic value with a desired characteristic value; determining whether the first measured characteristic value is within a predetermined percentage of the desired characteristic value; adjusting a component of the device and measuring the characteristic of the device to obtain a second measured characteristic, comparing the second measured characteristic value with a desired characteristic value, determining whether the second measured characteristic value is within a predetermined percentage of the desired characteristic value; and repeating the previous step until the second measured characteristic value is within the predetermined percentage of the desired characteristic value.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: February 22, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Ayax D. Ramirez, Stephen D. Russell
  • Patent number: 7755825
    Abstract: A method of fabricating an optical modulator on a silicon substrate, comprising: forming a silicon nitride layer on the silicon substrate; forming a first polycrystalline silicon layer (PSL) on the silicon nitride layer; patterning the first PSL; forming a first silicon dioxide layer (SDL) on the first patterned PSL; patterning the first SDL; forming a second PSL on the first patterned SDL; patterning the second PSL; forming a second SDL on the second patterned PSL; patterning the second SDL; forming a third PSL on the second patterned SDL; patterning the third PSL; forming a metal layer on the third patterned PSL; patterning the metal layer; removing the first and second SDLs to effect release of first and second side reflectors; forming an active layer on the metal layer; and patterning the active layer or stack to form a base reflector and associated conductive traces for biasing.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: July 13, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Rudy S. Padilla, Michael G. Lovern, Stephen D. Russell, Randy L. Shimabukuro
  • Patent number: 7708413
    Abstract: A sensing system comprises a corner-cube reflector that has three reflective surfaces wherein at least one of the reflective surfaces is a surface of a bimaterial cantilever. The reflective surface of the bimaterial cantilever undergoes a change between a substantially planar shape and a curved shape upon direct exposure to an agent of interest. Such a change is perceived by a suitable detector.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: May 4, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Joanna Ptasinski, Randy L. Shimabukuro, Stephen D. Russell
  • Patent number: 7700032
    Abstract: A laser ablation process is applied to a semiconductor substrate causing the semiconductor material surface and subsurface to be superheated to the point where material is ablated from the material substrate. Optional subsequent laser pulse(s) liquefy the particles, preferably while suspended in air, and the material surface tension causes the liquefied droplet of semiconductor material to form a sphere. The droplet preferably solidifies in air before reaching the substrate of its origin or another substrate for collection.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: April 20, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Ryan P. Lu, Ayax D. Ramirez, Ozzie Csanadi, Stephen D. Russell
  • Patent number: 7597717
    Abstract: A scanning probe microscopy head may include a base portion, cantilevers coupled to the base portion, and at least one tip coupled to each of the cantilevers. At least two of the cantilevers and associated tips may be configured to perform a different scanning probe microscopy technique. The cantilevers may be positioned perpendicular to the base portion and may be coupled to the perimeter of the base portion. The base portion may include circuitry coupled thereto for providing electricity to the tips. The cantilevers may each be placed into a recessed slot along the perimeter of the base and secured to the base by a securing mechanism, such as a spring clip. The cantilevers may be operatively coupled to a linear positioner, such as a piezoelectric motor, coupled to the perimeter of the base for controlling the amount of protrusion of the cantilevers from the perimeter of the base.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: October 6, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Ryan P. Lu, Stephen D. Russell, Ayax D. Ramirez
  • Patent number: 7589662
    Abstract: A method of determining a radar receiver path, comprising the steps of: obtaining a transmitter position; obtaining a target position and velocity; obtaining a radar receiver position and velocity; determining a transmitter aspect angle gradient, a transmitter aspect angle time derivative and a transmitter co-state vector time derivative; determining a target aspect angle gradient, a target aspect angle time derivative and a target co-state vector time derivative; generating a radar platform heading variable, and a group of differential variables over a defined time span; inputting the group of differential variables into a differential equation solver; receiving a group of possible headings for the radar receiver path; and finding an optimum radar receiver path from the group of possible headings.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: September 15, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Douglas S. Hulbert, Ayax D. Ramirez, Stephen D. Russell, Randy L. Shlmabukuro, Mark W. Roberts
  • Patent number: 7466369
    Abstract: A portable micro-display projector uses a light transmissive liquid crystal display system wherein light is projected co-linearly from a light source through, and is selectively altered by, a transmissive liquid crystal display or liquid crystal light valve of the light transmissive liquid crystal display system.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: December 16, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Bruce W. Offord, Stephen D. Russell, Randy L. Shimabukuro
  • Patent number: 7457501
    Abstract: A technique for coupling electromagnetic energy into an aperture smaller than the wavelength of the electromagnetic energy desired to be coupled is disclosed.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: November 25, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Joanna N. Ptasinski, J. Scott Rodgers, Stephen D. Russell
  • Patent number: 7383071
    Abstract: One embodiment is a microprobe. An example of the microprobe comprises a housing having an aperture. This example of the microprobe also comprises an ISFET attached to the housing. The ISFET may have a gate located proximate the aperture. This example of the microprobe further comprises a reference electrode attached to the housing proximate the aperture. Another embodiment is a microsensor system. Another embodiment is a method for measuring a characteristic of tissue. Yet another condition embodiment is a method for monitoring tissue pH.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: June 3, 2008
    Assignee: United States of America as represented by the Secretary of the Navy
    Inventors: Stephen D. Russell, Paul R. de la Houssaye, Jamie K. Pugh, William Pugh, Dennis E. Amundson, Howard W. Walker
  • Patent number: 7336882
    Abstract: A Metal Nanoparticle Photonic Bandgap Device in SOI (NC#97882). The device includes a substrate having a semiconductor layer over an insulator layer; a photonic bandgap structure having at least one period operatively coupled to the substrate, adapted to receive and output amplified light along a predetermined path; a metal nanoparticle structure, operatively coupled to the photonic bandgap structure and the substrate, adapted to receive and amplify light rays and output amplified light.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: February 26, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Joanna N Ptasinski, John Scott Rodgers, Stephen D. Russell
  • Patent number: 7330550
    Abstract: A cryptographic system includes: a) a light source for generating an excitation light signal; b) a spatial light modulator for encoding the excitation light signal with data; c) a wavelength dispersive element for transforming the excitation light signal into a spectral encoded light signal characterized by relative peak intensities at specific wavelengths; d) an optical detector for generating an information output signal in response to receiving an optical input signal, wherein the information output signal represents spectral and intensity characteristics of the optical input signal; and e) a processor for validating the information output signal if differences between representations of the optical input signal, and representations of the spectral encoded light signal are within predetermined limits.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: February 12, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Shikik T. Johnson, Stephen D. Russell
  • Patent number: 7305168
    Abstract: A Electronic/Photonic Bandgap Device (NC#98614). The apparatus includes a substrate; an electronics layer operatively coupled to the substrate; and an optical bus layer operatively coupled to the electronics layer. The optical bus layer comprises at least one 3D photonic bandgap structure having at least one period operatively coupled to the electronics layer and comprising a plurality of honeycomb-like structures having a plurality of high index regions and a plurality of low index regions, wherein the plurality of honeycomb-like structures comprises at least four honeycomb-like structures layered over each other, wherein a second honeycomb-like structure is offset from a first honeycomb-like structure, wherein a third honeycomb-like structure is offset from a second honeycomb-like structure, and wherein a fourth honeycomb-like structure is not offset from the first honeycomb-like structure. The 3D photonic bandgap structure and the electronics layer are monolithically integrated over the substrate.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: December 4, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: J. Scott Rodgers, Joanna N. Ptasinski, Stephen D. Russell, Michael G. Lovern, Randy L. Shimabukuro