Patents by Inventor Stephen DeWeerth

Stephen DeWeerth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070178579
    Abstract: Disclosed are apparatus and methods that provide the ability to electrical stimulate a physical system, and actively eliminate interference with signal acquisition (artifacts) that arises from the stimulation. The technique implemented in the circuits and methods for eliminating interference connects a discharge path to a physical interface to the system to remove charge that is built-up during stimulation. By placing the discharge path in a feedback loop that includes a recording preamplifier and AC-coupling circuitry, the physical interface is brought back to its pre-stimulation offset voltage. The disclosed apparatus and methods may be used with piezoelectric transducers, ultrasound devices, optical diodes, and polarizable and non-polarizable electrodes. The disclosed apparatus can be employed in implantable devices, in vitro or in vivo setups with vertebrate and invertebrate neural tissue, muscle fibers, pancreatic islet cells, osteoblasts, osteoclasts, bacteria, algae, fungi, protists, and plants.
    Type: Application
    Filed: August 29, 2006
    Publication date: August 2, 2007
    Inventors: James Ross, Edgar Brown, Richard Blum, Stephen DeWeerth
  • Publication number: 20060181097
    Abstract: Apparatus and processes are disclosed that provide a microfabricated microtool having a mechanically actuated manipulating mechanism. The microtool comprises a tweezer having flexible arms, and an actuating mechanism. A biological, electrical, or mechanical component is grasped, cut, sensed, or measured by the flexible arms. The actuating mechanism requires no electric power and is achieved by the reciprocating motion of a smooth, rigid microstructure applied against the flexible arms of the microtool. In certain implementations, actuator motion is controlled distally by a tethered cable. A process is also disclosed for producing a microtool, and in particular, by micropatterning. Photolithography may be used to form micro-molds that pattern the microtool or components of the microtool. In certain implementations, the tweezer and actuating mechanism are produced fully assembled. In other implementations, the tweezer and actuating mechanism are produced separately and assembled together.
    Type: Application
    Filed: November 11, 2005
    Publication date: August 17, 2006
    Inventors: Yoonsu Choi, Mark Allen, James Ross, Stephen DeWeerth