Patents by Inventor Stephen E. Clarke

Stephen E. Clarke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12081145
    Abstract: Various disclosed embodiments include thermionic energy converters and electronic circuitry for generating pulses for igniting plasma in a hermetic package of a thermionic energy converter. In various embodiments, an illustrative thermionic energy converter includes a hermetic package charged with a non-cesium gas additive. The hermetic package is configured to route into the hermetic package pulses for igniting plasma in the hermetic package. A cesium reservoir is disposed in the hermetic package. A cathode is disposed in the hermetic package and an anode is disposed in the hermetic package.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: September 3, 2024
    Assignee: Modern Hydrogen, Inc.
    Inventors: Stephen E. Clark, Roelof E. Groenewald, Arvind Kannan, Andrew T. Koch, Hsin-I Lu, Alexander J. Pearse, Peter J. Scherpelz
  • Patent number: 11626273
    Abstract: Various disclosed embodiments include thermionic energy converters with a thermal concentrating hot shell and emitters for thermionic energy converters. In some embodiments, an illustrative thermionic energy converter includes: an emitter electrode; a hot shell configured to concentrate heat flow toward the emitter electrode; a collector electrode; and a cold shell that is thermally isolated from the hot shell.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: April 11, 2023
    Assignee: Modern Electron, Inc.
    Inventors: Stephen E. Clark, David A. Degtiarov, Gregory A. Kirkos, Daniel Kraemer, John J. Lorr, Max N. Mankin, Jason M. Parker, Alexander J. Pearse, Levi D. Rodriguez, Ad de Pijper
  • Patent number: 11205564
    Abstract: Disclosed embodiments include vacuum electronic devices, methods of operating a vacuum electronic device, and methods of fabricating a vacuum electronic device. In a non-limiting embodiment, a vacuum electronics device includes a cathode and an anode. At least one focus grid is disposed between the cathode and the anode, and the at least one focus grid is physically disconnected from the cathode. The at least one acceleration grid is disposed between the cathode and the anode, and the at least one acceleration grid is further disposed adjacent the at least one focus grid. The at least one acceleration grid is physically disconnected from the cathode.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: December 21, 2021
    Assignee: MODERN ELECTRON, INC.
    Inventors: Stephen E. Clark, Richard M. Gorski, Arvind Kannan, Andrew T. Koch, Andrew R. Lingley, Hsin-I Lu, Max N. Mankin, Tony S. Pan, Jason M. Parker
  • Publication number: 20210351722
    Abstract: Various disclosed embodiments include combined heating and power modules and combined heat and power devices. In an illustrative embodiment, a combined heat and power device includes a heating system including: at least one burner; at least one igniter configured to ignite the at least one burner; a fluid motivator assembly including an electrically powered prime mover; and a heat exchanger fluidly couplable to the fluid motivator assembly. At least one alkali metal thermal-to-electricity converter (AMTEC) has a high pressure zone and a low pressure zone, the high pressure zone being thermally couplable to the at least one burner, the low pressure zone being thermally couplable to the heat exchanger.
    Type: Application
    Filed: March 12, 2021
    Publication date: November 11, 2021
    Inventors: Justin B. Ashton, Stephen E. Clark, William Kokonaski, Daniel Kraemer, John J. Lorr, Max N. Mankin, David J. Menacher, Patrick D. Noble, Tony S. Pan, Alexander J. Pearse, Ad de Pijper, Lowell L. Wood
  • Publication number: 20210254581
    Abstract: Various disclosed embodiments include combined heating and power modules and combined heat and power devices. In an illustrative embodiment, a combined heat and power device includes a heating system including: at least one burner; at least one igniter configured to ignite the at least one burner; a fluid motivator assembly including an electrically powered prime mover; and a heat exchanger fluidly couplable to the fluid motivator assembly. At least one alkali metal thermal-to-electricity converter (AMTEC) has a high pressure zone and a low pressure zone, the high pressure zone being thermally couplable to the at least one burner, the low pressure zone being thermally couplable to the heat exchanger.
    Type: Application
    Filed: March 12, 2021
    Publication date: August 19, 2021
    Inventors: Justin B. Ashton, Stephen E. Clark, William Kokonaski, Daniel Kraemer, John J. Lorr, Max N. Mankin, David J. Menacher, Patrick D. Noble, Tony S. Pan, Alexander J. Pearse, Ad de Pijper, Lowell L. Wood
  • Publication number: 20210257958
    Abstract: Various disclosed embodiments include combined heating and power modules and combined heat and power devices. In an illustrative embodiment, a combined heat and power device includes a heating system including: at least one burner; at least one igniter configured to ignite the at least one burner; a fluid motivator assembly including an electrically powered prime mover; and a heat exchanger fluidly couplable to the fluid motivator assembly. At least one thermophotovoltaic converter has a photon emitter and at least one photovoltaic cell, the photon emitter being thermally couplable to the at least one burner, the at least one photovoltaic cell being thermally couplable to the heat exchanger.
    Type: Application
    Filed: January 22, 2021
    Publication date: August 19, 2021
    Inventors: Justin B. Ashton, Stephen E. Clark, William Kokonaski, Daniel Kraemer, John J. Lorr, Max N. Mankin, David J. Menacher, Patrick D. Noble, Tony S. Pan, Alexander J. Pearse, Ad de Pijper, Lowell L. Wood
  • Publication number: 20210257959
    Abstract: Various disclosed embodiments include combined heating and power modules and combined heat and power devices. In an illustrative embodiment, a combined heat and power device includes a heating system including: at least one burner; at least one igniter configured to ignite the at least one burner; a fluid motivator assembly including an electrically powered prime mover; and a heat exchanger fluidly couplable to the fluid motivator assembly. At least one thermophotovoltaic converter has a photon emitter and at least one photovoltaic cell, the photon emitter being thermally couplable to the at least one burner, the at least one photovoltaic cell being thermally couplable to the heat exchanger.
    Type: Application
    Filed: January 22, 2021
    Publication date: August 19, 2021
    Inventors: Justin B. Ashton, Stephen E. Clark, William Kokonaski, Daniel Kraemer, John J. Lorr, Max N. Mankin, David J. Menacher, Patrick D. Noble, Tony S. Pan, Alexander J. Pearse, Ad de Pijper, Lowell L. Wood
  • Publication number: 20210111011
    Abstract: Various disclosed embodiments include thermionic energy converters and electronic circuitry for generating pulses for igniting plasma in a hermetic package of a thermionic energy converter. In various embodiments, an illustrative thermionic energy converter includes a hermetic package charged with a non-cesium gas additive. The hermetic package is configured to route into the hermetic package pulses for igniting plasma in the hermetic package. A cesium reservoir is disposed in the hermetic package. A cathode is disposed in the hermetic package and an anode is disposed in the hermetic package.
    Type: Application
    Filed: October 7, 2020
    Publication date: April 15, 2021
    Inventors: Stephen E. Clark, Roelof E. Groenewald, Arvind Kannan, Andrew T. Koch, Hsin-I Lu, Alexander J. Pearse, Peter J. Scherpelz
  • Publication number: 20210057123
    Abstract: Various disclosed embodiments include elements for mitigating electron reflection in a vacuum electronic device, vacuum electronic devices that incorporate elements for mitigating electron reflection, and methods of fabricating elements for reducing reflection of electrons off an electrode. An illustrative electrode assembly includes an electrode. Elements are configured to reduce reflection of electrons off the electrode.
    Type: Application
    Filed: August 20, 2020
    Publication date: February 25, 2021
    Inventors: Stephen E. Clark, Roelof E. Groenewald, Arvind Kannan, Hsin-I Lu, Daniel J. Merthe, Jason M. Parker, Alexander J. Pearse, Peter J. Scherpelz, Max N. Mankin, Tony S. Pan
  • Publication number: 20200335314
    Abstract: Various disclosed embodiments include thermionic energy converters with a thermal concentrating hot shell and emitters for thermionic energy converters. In some embodiments, an illustrative thermionic energy converter includes: an emitter electrode; a hot shell configured to concentrate heat flow toward the emitter electrode; a collector electrode; and a cold shell that is thermally isolated from the hot shell.
    Type: Application
    Filed: April 6, 2020
    Publication date: October 22, 2020
    Applicant: Modern Electron, Inc.
    Inventors: Stephen E. Clark, David A. Degtiarov, Gregory A. Kirkos, Daniel Kraemer, John J. Lorr, Max N. Mankin, Jason M. Parker, Alexander J. Pearse, Levi D. Rodriguez, Ad de Pijper
  • Publication number: 20200294780
    Abstract: Various disclosed embodiments include combined heating and power modules and combined heat and power devices. In an illustrative embodiment, a combined heat and power device includes a heating system including: at least one burner; at least one igniter configured to ignite the at least one burner; a fluid motivator assembly including an electrically powered prime mover; and a heat exchanger fluidly couplable to the fluid motivator assembly. At least one thermionic energy converter has a hot shell and a cold shell, the hot shell being thermally couplable to the at least one burner, the cold shell being thermally couplable to the heat exchanger.
    Type: Application
    Filed: March 10, 2020
    Publication date: September 17, 2020
    Applicant: Modern Electron, LLC
    Inventors: Justin B. Ashton, Stephen E. Clark, William Kokonaski, Daniel Kraemer, John J. Lorr, Max N. Mankin, David J. Menacher, Patrick D. Noble, Tony S. Pan, Ad de Pijper, Lowell L. Wood
  • Publication number: 20200294779
    Abstract: Various disclosed embodiments include combined heating and power modules and combined heat and power devices. In an illustrative embodiment, a combined heat and power device includes a heating system including: at least one burner; at least one igniter configured to ignite the at least one burner; a fluid motivator assembly including an electrically powered prime mover; and a heat exchanger fluidly couplable to the fluid motivator assembly. At least one thermionic energy converter has a hot shell and a cold shell, the hot shell being thermally couplable to the at least one burner, the cold shell being thermally couplable to the heat exchanger.
    Type: Application
    Filed: February 18, 2020
    Publication date: September 17, 2020
    Applicant: Modern Electron, LLC
    Inventors: Justin B. Ashton, Stephen E. Clark, William Kokonaski, Daniel Kraemer, John J. Lorr, Max N. Mankin, David J. Menacher, Patrick D. Noble, Tony S. Pan, Ad de Pijper, Lowell L. Wood
  • Patent number: 10658144
    Abstract: Disclosed embodiments include vacuum electronics devices and methods of fabricating a vacuum electronics device. In a non-limiting embodiment, a vacuum electronics device includes: an electrode; a plurality of grid supports disposed on the electrode, each of the plurality of grid supports having a first width; and a plurality of grid lines, each of the plurality of grid lines being supported on an associated one of the plurality of grid supports, each of the plurality of grid lines having a second width that is wider than the first width.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: May 19, 2020
    Assignee: Modern Electron, LLC
    Inventors: Stephen E. Clark, Chloe A. M. Fabien, Gary D. Foley, Arvind Kannan, Andrew T. Koch, Andrew R. Lingley, Hsin-I Lu, Max N. Mankin, Tony S. Pan, Jason M. Parker, Peter J. Scherpelz, Yong Sun, Chuteng Zhou
  • Publication number: 20190371582
    Abstract: Disclosed embodiments include vacuum electronic devices, methods of operating a vacuum electronic device, and methods of fabricating a vacuum electronic device. In a non-limiting embodiment, a vacuum electronics device includes a cathode and an anode. At least one focus grid is disposed between the cathode and the anode, and the at least one focus grid is physically disconnected from the cathode. The at least one acceleration grid is disposed between the cathode and the anode, and the at least one acceleration grid is further disposed adjacent the at least one focus grid. The at least one acceleration grid is physically disconnected from the cathode.
    Type: Application
    Filed: May 22, 2018
    Publication date: December 5, 2019
    Applicant: Modern Electron, LLC
    Inventors: Stephen E. Clark, Richard M. Gorski, Arvind Kannan, Andrew T. Koch, Andrew R. Lingley, Hsin-I Liu, Max N. Mankin, Tony S. Pan, Jason M. Parker
  • Publication number: 20190043685
    Abstract: Disclosed embodiments include vacuum electronics devices and methods of fabricating a vacuum electronics device. In a non-limiting embodiment, a vacuum electronics device includes: an electrode; a plurality of grid supports disposed on the electrode, each of the plurality of grid supports having a first width; and a plurality of grid lines, each of the plurality of grid lines being supported on an associated one of the plurality of grid supports, each of the plurality of grid lines having a second width that is wider than the first width.
    Type: Application
    Filed: July 20, 2018
    Publication date: February 7, 2019
    Applicant: Modern Electron, LLC
    Inventors: Stephen E. Clark, Chloe A. M. Fabien, Gary D. Foley, Arvind Kannan, Andrew T. Koch, Andrew R. Lingley, Hsin-I Lu, Max N. Mankin, Tony S. Pan, Jason M. Parker, Peter J. Scherpelz, Yong Sun, Chuteng Zhou
  • Publication number: 20130054138
    Abstract: A system and method for positioning control and management of racing sailboat positions and velocities includes the strategic placement of a global positioning receiver on the sailboat. Global positioning system (GPS) receiver unit receives GPS signals from positioning satellites. Prior to starting a race, the sailboat takes two line shots of the starting line from beyond one or both ends of the starting line. In response to operator selection via a user input interface connected to the GPS receiver, the boat's respective positions at which the two line shots are taken are each recorded by a processor connected to the GPS receiver. The processor calculates the equation of a straight line corresponding to that of the extended starting line, and plots it in an x-y plane. The processor additionally continuously determines the boat's current location, speed and bearing relative to the start line, and plots its current course in the same x-y plane as the starting line.
    Type: Application
    Filed: August 23, 2011
    Publication date: February 28, 2013
    Inventor: Stephen E. Clark
  • Patent number: 6257293
    Abstract: A method and apparatus for manufacturing prestressed piezoelectric actuators which maximizes output, and increases the precision and efficiency with which the multi-layer actuators are made. Individual layers of the piezoelectric actuators are automatically stacked and registered with respect to each other within press members prior to bonding the layers to each other with a thermoplastic adhesive. Compressive force is applied while heat is conductively transferred from a heating element to the actuator in order to raise the temperature of each of the layers above the melting point of the thermoplastic. The temperature of the heating element is then decreased until the temperature of the actuator layers drops to below the melting point of the thermoplastic adhesive, thereby bonding the layers. Compressive force is then released, and the actuators are removed, further cooled and polarized.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: July 10, 2001
    Assignee: Face International Corp.
    Inventors: Samuel A. Face, Jr., Stephen E. Clark
  • Patent number: 6158126
    Abstract: A small, lightweight, efficient, quiet electric shaver is provided in which one or more piezoelectric drivers are mechanically coupled to a cutting blade. The cutting action of the blade is generated by the piezoelectric drivers which, when electrically energized, oscillate at a predetermined frequency. The piezoelectric driver is electrically energized by a regenerative drive circuit. Hair shafts, which protrude from the surface to be shaved through a perforated foil member, are sheared at their base by the oscillating action of the blade.
    Type: Grant
    Filed: February 17, 1999
    Date of Patent: December 12, 2000
    Assignee: Face International Corp.
    Inventors: Norvell S. Rose, Jr., Brennan C. Swain, Stephen E. Clark
  • Patent number: 6118169
    Abstract: A method for increasing the layer density uniformity across a conductive layer, which comprises a plurality of functional blocks, of an integrated circuit is presented. Increased uniformity is achieved by tiling a plurality of capacitors in between the functional blocks. The configuration of the capacitor array and number of the capacitor cells in the array is arranged so as to provide approximate uniformity in the conductor-to-non-conductor density across the entire conductive layer. The capacitor array may be used to reduce power supply switching noise by coupling one or more of the capacitor cells making up the capacitor array between a high power rail and a low power rail.
    Type: Grant
    Filed: December 1, 1998
    Date of Patent: September 12, 2000
    Assignee: Agilent Technologies
    Inventors: Paul D Nuber, Dan Stotz, M. Jason Welch, Stephen E. Clarke, Guy H. Humphrey, C. Stephen Dondale
  • Patent number: 6074178
    Abstract: A peristaltic piezoelectrically actuated fluid pump including two or more pairs of piezoelectric deformable members that are self-actuated, a flexible hose member, a pump chamber, inlet and outlet ports for communicating the pump chamber with the exterior of the flexible hose member, valves for opening and closing the ports, and a power supply is provided. The diaphragm members may include a prestressed piezoelectric element which is durable, inexpensive and lightweight as compared with diaphragm members of prior diaphragm pumps of comparable discharge capacity, and is actuated via electrical signals from an outside power source. Each pair of piezoelectric diaphragm members is actuated out of phase with the other(s) so as to allow fluid to be pumped through the flexible hose member peristaltically.
    Type: Grant
    Filed: April 15, 1998
    Date of Patent: June 13, 2000
    Assignee: Face International Corp.
    Inventors: Richard P. Bishop, Bradbury R. Face, Samuel A. Face, Stephen E. Clark, Norvell S. Rose