Patents by Inventor Stephen E. Robinson

Stephen E. Robinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957893
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Patent number: 11957894
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Publication number: 20230362499
    Abstract: A device and method used to image wells and other fluid-carrying tubulars having localized features of interest. The device scans large areas of the tubular first in a low-resolution mode using an ultrasound sensor and in a high-resolution mode using a camera, then identifies areas that contain those localized features with some probability. The device images are stored for further image processing. The two sensors are axially spaced-apart on the device. A computer remote from the imaging device renders a visualization of the tubular and localized features using the optical and ultrasound images.
    Type: Application
    Filed: July 21, 2023
    Publication date: November 9, 2023
    Inventors: Stephen E Robinson, Kurt Kolb
  • Publication number: 20230203942
    Abstract: A device and method for imaging, measuring and identifying multiphase fluid flow in wellbores using phased array Doppler ultrasound. The device includes a radially-configured or ring-shaped ultrasound transducer that when deployed in a well in Doppler mode can measure the velocity of radially flowing fluids in the wellbore and generate a 3D image of radial flow in the wellbore, including flowback into the wellbore after fracturing operations, or flow leaving the wellbore during water injection operations. The ring-shaped ultrasound transducer can also simultaneously operate in a B-mode to generate a B-mode image of the wellbore liner upon which the Doppler image can be overlaid. The device may also include a forward facing ultrasound transducer either instead of or in place of the ring-shaped transducer for obtaining information and images on axial flow in the wellbore in Doppler mode, and the location of phase boundaries and phase locations in B-mode.
    Type: Application
    Filed: March 7, 2023
    Publication date: June 29, 2023
    Inventors: Osman S. Malik, Graham T. Manders, Stephen E. Robinson
  • Patent number: 11619125
    Abstract: A device and method for imaging, measuring and identifying multiphase fluid flow in wellbores using phased array Doppler ultrasound. The device includes a radially-configured or ring-shaped ultrasound transducer that when deployed in a well in Doppler mode can measure the velocity of radially flowing fluids in the wellbore and generate a 3D image of radial flow in the wellbore, including flowback into the wellbore after fracturing operations, or flow leaving the wellbore during water injection operations. The ring-shaped ultrasound transducer can also simultaneously operate in a B-mode to generate a B-mode image of the wellbore liner upon which the Doppler image can be overlaid. The device may also include a forward facing ultrasound transducer either instead of or in place of the ring-shaped transducer for obtaining information and images on axial flow in the wellbore in Doppler mode, and the location of phase boundaries and phase locations in B-mode.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: April 4, 2023
    Assignee: DarkVision Technologies Inc
    Inventors: Osman S. Malik, Graham T. Manders, Stephen E. Robinson
  • Publication number: 20220235651
    Abstract: Methods and devices for imaging wells using phased array ultrasound imaging devices is described. The devices enable high resolution real-time imaging of a well during various operations in the well, including during completions, fracturing, milling, fishing and drilling operations. The phased array ultrasound imaging devices may be integrated with other well tools, such as a bottom hole assembly (BHA), fishing tools, milling tools, fracturing tools, and drilling tools, in order to integrate imaging capabilities into such tools.
    Type: Application
    Filed: April 18, 2022
    Publication date: July 28, 2022
    Applicant: DarkVision Technologies Inc.
    Inventors: Osman S. MALIK, Graham T. Manders, Stephen E. Robinson
  • Patent number: 11326445
    Abstract: Methods and devices for imaging wells using phased array ultrasound imaging devices is described. The devices enable high resolution real-time imaging of a well during various operations in the well, including during completions, fracturing, milling, fishing and drilling operations. The phased array ultrasound imaging devices may be integrated with other well tools, such as a bottom hole assembly (BHA), fishing tools, milling tools, fracturing tools, and drilling tools, in order to integrate imaging capabilities into such tools.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: May 10, 2022
    Assignee: DarkVision Technologies Inc.
    Inventors: Osman S. Malik, Graham T. Manders, Stephen E. Robinson
  • Publication number: 20210355817
    Abstract: A device and method for imaging, measuring and identifying multiphase fluid flow in wellbores using phased array Doppler ultrasound. The device includes a radially-configured or ring-shaped ultrasound transducer that when deployed in a well in Doppler mode can measure the velocity of radially flowing fluids in the wellbore and generate a 3D image of radial flow in the wellbore, including flowback into the wellbore after fracturing operations, or flow leaving the wellbore during water injection operations. The ring-shaped ultrasound transducer can also simultaneously operate in a B-mode to generate a B-mode image of the wellbore liner upon which the Doppler image can be overlaid. The device may also include a forward facing ultrasound transducer either instead of or in place of the ring-shaped transducer for obtaining information and images on axial flow in the wellbore in Doppler mode, and the location of phase boundaries and phase locations in B-mode.
    Type: Application
    Filed: July 30, 2021
    Publication date: November 18, 2021
    Applicant: DarkVision Technologies Inc
    Inventors: Osman S. MALIK, Graham T. MANDERS, Stephen E. ROBINSON
  • Patent number: 11092002
    Abstract: A device and method for imaging, measuring and identifying multiphase fluid flow in wellbores using phased array Doppler ultrasound. The device includes a radially-configured or ring-shaped ultrasound transducer that when deployed in a well in Doppler mode can measure the velocity of radially flowing fluids in the wellbore and generate a 3D image of radial flow in the wellbore, including flowback into the wellbore after fracturing operations, or flow leaving the wellbore during water injection operations. The ring-shaped ultrasound transducer can also simultaneously operate in a B-mode to generate a B-mode image of the wellbore liner upon which the Doppler image can be overlaid. The device may also include a forward facing ultrasound transducer either instead of or in place of the ring-shaped transducer for obtaining information and images on axial flow in the wellbore in Doppler mode, and the location of phase boundaries and phase locations in B-mode.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: August 17, 2021
    Assignee: DarkVision Technologies Inc.
    Inventors: Osman S. Malik, Graham T. Manders, Stephen E. Robinson
  • Publication number: 20210003001
    Abstract: Methods and devices for imaging wells using phased array ultrasound imaging devices is described. The devices enable high resolution real-time imaging of a well during various operations in the well, including during completions, fracturing, milling, fishing and drilling operations. The phased array ultrasound imaging devices may be integrated with other well tools, such as a bottom hole assembly (BHA), fishing tools, milling tools, fracturing tools, and drilling tools, in order to integrate imaging capabilities into such tools.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Applicant: DarkVision Technologies Inc.
    Inventors: Osman S. Malik, Graham T. Manders, Stephen E. Robinson
  • Patent number: 10781690
    Abstract: Methods and devices for imaging wells using phased array ultrasound imaging devices is described. The devices enable high resolution real-time imaging of a well during various operations in the well, including during completions, fracturing, milling, fishing and drilling operations. The phased array ultrasound imaging devices may be integrated with other well tools, such as a bottom hole assembly (BHA), fishing tools, milling tools, fracturing tools, and drilling tools, in order to integrate imaging capabilities into such tools.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: September 22, 2020
    Assignee: DARKVISION TECHNOLOGIES INC.
    Inventors: Osman S. Malik, Graham T. Manders, Stephen E. Robinson
  • Publication number: 20180266243
    Abstract: Methods and devices for imaging wells using phased array ultrasound imaging devices is described. The devices enable high resolution real-time imaging of a well during various operations in the well, including during completions, fracturing, milling, fishing and drilling operations. The phased array ultrasound imaging devices may be integrated with other well tools, such as a bottom hole assembly (BHA), fishing tools, milling tools, fracturing tools, and drilling tools, in order to integrate imaging capabilities into such tools.
    Type: Application
    Filed: October 6, 2016
    Publication date: September 20, 2018
    Applicant: DarkVision Technologies Inc.
    Inventors: Osman S. MALIK, Graham T. MANDERS, Stephen E. ROBINSON
  • Publication number: 20180156025
    Abstract: Methods and devices for imaging wells using ultrasound is described. The devices include a modular imaging device having a telemetry module and a radial imaging module and/or forward imaging module. The radial imaging module includes a ring shaped phased array ultrasonic transducer array for generating images on the length of a wellbore. Various lens and housing configurations for the radial imaging module are described. The forward imaging module includes an ultrasonic transducer comprising one or more elements and having an adjustable viewpoint for generating images of obstructions found in a wellbore. Advanced imaging modes for a radial imaging module include multiple aperture and spiral wave imaging mode.
    Type: Application
    Filed: June 17, 2016
    Publication date: June 7, 2018
    Applicant: DarkVision Technologies Inc.
    Inventors: Graham T. MANDERS, Osman S. MALIK, Stephen E. ROBINSON, Jay Roderick HOPE
  • Publication number: 20180073353
    Abstract: A device and method for imaging, measuring and identifying multiphase fluid flow in wellbores using phased array Doppler ultrasound. The device includes a radially-configured or ring-shaped ultrasound transducer that when deployed in a well in Doppler mode can measure the velocity of radially flowing fluids in the wellbore and generate a 3D image of radial flow in the wellbore, including flowback into the wellbore after fracturing operations, or flow leaving the wellbore during water injection operations. The ring-shaped ultrasound transducer can also simultaneously operate in a B-mode to generate a B-mode image of the wellbore liner upon which the Doppler image can be overlaid. The device may also include a forward facing ultrasound transducer either instead of or in place of the ring-shaped transducer for obtaining information and images on axial flow in the wellbore in Doppler mode, and the location of phase boundaries and phase locations in B-mode.
    Type: Application
    Filed: March 15, 2016
    Publication date: March 15, 2018
    Applicant: DarkVision Technologies Inc.
    Inventors: Osman S. MALIK, Graham T. MANDERS, Stephen E. ROBINSON
  • Patent number: 6697660
    Abstract: An improved method, termed “statistical synthetic aperture magnetometry” (SSAM) of transforming magnetoencephalographic (MEG) measurements into corresponding three-dimensional images of the electrophysiological activity within the brain. The computed images are static, representing the time-integrated brain activity over a selected period. By selecting the time periods and frequency bands of interest, the SSAM method selectively images brain activity relating to different types of brain pathology or to cognitive events. Unlike prior art methods, the SSAM method compensates for the growth of ionic signal source strength estimates with depth into the head, resulting, in part, from the declining sensitivity of the MEG sensors. This is achieved by computing and displaying functions of the ratio of source strength to its noise for each element comprising the image.
    Type: Grant
    Filed: August 24, 1998
    Date of Patent: February 24, 2004
    Assignee: CTF Systems, Inc.
    Inventor: Stephen E. Robinson
  • Patent number: 6370414
    Abstract: A method of performing synthetic aperture magnetometery on the signals from a target organ using an array of biomagnetic sensors positioned in a predetermined manner around the target organ, each sensor in the array having a position vector and an orientation vector relative to a common coordinate system encompassing the target organ.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: April 9, 2002
    Assignee: CTF Systems, Inc.
    Inventor: Stephen E. Robinson
  • Patent number: 5469057
    Abstract: A SQUID system provides for tracking small input signals to a SQUID. A digital flux tracking loop provides for independently providing orthogonal error signal for signal and modulation feedback errors effective to form a flux tracking loop with the SQUID. A current source biases the SQUID with a current effective to cause the SQUID to output a periodic junction voltage V.sub.j having a period .PHI..sub.o, the V.sub.j having an amplitude as a function of magnetic flux .PHI. within the SQUID. A first processor modulates the magnetic flux within the SQUID to output at least three junction voltages. A second processor combines the at least three junction voltages and outputs first and second signals functionally related to flux tracking errors arising from the signal and modulation lock errors, respectively, the first and second signals forming feedback signals effective to form a flux tracking loop with the SQUID.
    Type: Grant
    Filed: March 8, 1994
    Date of Patent: November 21, 1995
    Assignee: University of New Mexico
    Inventor: Stephen E. Robinson
  • Patent number: 5269325
    Abstract: Signals produced by brain activity are measured by each sensor of an array of magnetic and/or electrical sensors external to but proximate to the head (or other portion of the body) of a subject. The measurements obtained simultaneously from all of the sensors are combined in a manner to permit selective measurement of the electrical activity from a specified location within the body, or alternatively, to permit the location in the body producing a particular type of response to be identified. The instantaneous measurement of each sensor is scaled by a weighting coefficient for that sensor, and the products added over all of the sensors. The weighting coefficients are calculated from the covariance matrix of the measurements made by the array of sensors.
    Type: Grant
    Filed: February 22, 1993
    Date of Patent: December 14, 1993
    Assignee: Biomagnetic Technologies, Inc.
    Inventors: Stephen E. Robinson, William C. Black, Jr.
  • Patent number: 5016128
    Abstract: An information storage device includes a magnetic recording medium, preferably supported upon a rotating disk, an electromagnetic writing device that writes magnetic patterns into the recording medium, and a superconducting quantum interference device (SQUID) that reads the magnetic patterns in the recording medium, the writing device and the SQUID preferably being mounted upon a read/write head. The SQUID as operated in its superconducting state is a highly sensitive and directional detector of the magnetic state of the recording medium, permitting it to be spaced relatively distantly from the recording medium yet read the state of small areas of the medium. Use of high temperature superconductors in the SQUID permits practical construction of the information storage device. The read/write head may support a plurality of write devices, and an array of SQUIDs can be utilized so that little or no relative movement of the read/write head is required to read and write from all tracks of the disk.
    Type: Grant
    Filed: April 27, 1988
    Date of Patent: May 14, 1991
    Assignee: Biomagnetic Technologies, Inc.
    Inventors: Mark S. DiIorio, Stephen E. Robinson, Duane B. Crum, Douglas N. Paulson, D. Scott Buchanan, James R. Marsden
  • Patent number: 4977896
    Abstract: Signals produced by brain activity are measured by each sensor of an array of magnetic and/or electrical sensors external to but proximate to the head (or other portion of the body) of a subject. The measurements obtained simultaneously from all of the sensors are combined in a manner to permit selective measurement of the electrical activity from a specified location within the body, or alternatively, to permit the location in the body producing a particular type of response to be identified. The instantaneous measurement of each sensor is scaled by a weighting coefficient for that sensor, and the products added over all of the sensors. The weighting coefficients are calculated from a mathematical model of the brain that includes information on the shape of the potential source, the extent or type of source activity, the electrical and magnetic properties of the media, and the locations and orientations of the sources and the sensors.
    Type: Grant
    Filed: May 26, 1989
    Date of Patent: December 18, 1990
    Assignee: Biomagnetic Technologies, Inc.
    Inventors: Stephen E. Robinson, William C. Black, Jr.