Patents by Inventor Stephen Edward Greco

Stephen Edward Greco has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7488679
    Abstract: A method of forming an interconnect structure in an inter-layer dielectric (ILD) material, the method include the steps of creating one or more via openings in the ILD material; forming a first liner covering at least one of the one or more via openings; creating one or more trench openings on top of at least one of the one or more via openings covered by the first liner; and forming a second liner covering the trenching openings and at least part of the first liner. An interconnect structure formed by the method is also provided.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: February 10, 2009
    Assignee: International Business Machines Corporation
    Inventors: Theodorus Eduardus Standaert, Pegeen M. Davis, John Anthony Fitzsimmons, Stephen Edward Greco, Tze-Man Ko, Naftali Eliahu Lustig, Lee Matthew Nicholson, Sujatha Sankaran
  • Patent number: 7456501
    Abstract: A semiconductor structure includes a semiconductor substrate, a recess located in at least one major surface of the substrate, an electrical insulating layer located over the at least one major surface and in the recess, a conductive barrier located over the insulating layer and in the recess and over the at least one major surface, a plating seed layer located over the conductive barrier within the recess only, and a conductive metal in the recess only.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: November 25, 2008
    Assignee: International Business Machines Corporation
    Inventors: Cyprian Emeka Uzoh, Stephen Edward Greco
  • Publication number: 20080026568
    Abstract: A method of forming an interconnect structure in an inter-layer dielectric (ILD) material, the method include the steps of creating one or more via openings in the ILD material; forming a first liner covering at least one of the one or more via openings; creating one or more trench openings on top of at least one of the one or more via openings covered by the first liner; and forming a second liner covering the trenching openings and at least part of the first liner. An interconnect structure formed by the method is also provided.
    Type: Application
    Filed: July 31, 2006
    Publication date: January 31, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Theodorus Eduardus Standaert, Pegeen M. Davis, John Anthony Fitzsimmons, Stephen Edward Greco, Tze-Man Ko, Naftali Eliahu Lustig, Lee Matthew Nicholson, Sujatha Sankaran
  • Patent number: 7300825
    Abstract: Custom connections between pairs of copper wires in a last damascene wiring level are effected by creating openings in an overlying insulating layer which span a distance between portions of the two wires, then filling the openings with aluminum. The openings can be created (or completed) by a second, maskless UV laser exposure of positive photoresist which is used for patterning the insulating layer. If an opening is not created, an aluminum connecting shape overlying the insulating layer will not effect a connection between the two wires. Similar results can be achieved by laser exposure of a resist used to pattern the aluminum layer, thereby causing breaks in connecting shape when it is desired not to have a connection.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: November 27, 2007
    Assignee: International Business Machines Corporation
    Inventors: Nancy Anne Greco, Stephen Edward Greco, Erik L. Hedberg
  • Patent number: 7253098
    Abstract: A chemical mechanical polishing (CMP) step is used to remove excess conductive material (e.g., Cu) overlying a low-k or ultralow-k interlevel dielectric layer (ILD) layer having trenches filled with conductive material, for a damascene interconnect structure. A reactive ion etch (RIE) or a Gas Cluster Ion Beam (GCIB) process is used to remove a portion of a liner which is atop a hard mask. A wet etch step is used to remove an oxide portion of the hard mask overlying the ILD, followed by a final touch-up Cu CMP (CMP) step which chops the protruding Cu patterns off and lands on the SiCOH hard mask. In this manner, processes used to remove excess conductive material substantially do not affect the portion of the hard mask overlying the interlevel dielectric layer.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: August 7, 2007
    Assignee: International Business Machines Corporation
    Inventors: Shyng-Tsong T. Chen, Kaushik Arun Kumar, Stephen Edward Greco, Shom Ponoth, Terry Allen Spooner, David L. Rath, Wei-Tsu Tseng
  • Patent number: 6831364
    Abstract: A method for forming a porous dielectric material layer in an electronic structure and the structure formed are disclosed. In the method, a porous dielectric layer in a semiconductor device can be formed by first forming a non-porous dielectric layer, then partially curing, patterning by reactive ion etching, and final curing the non-porous dielectric layer at a higher temperature than the partial curing temperature to transform the non-porous dielectric material into a porous dielectric material, thus forming a dielectric material that has a low dielectric constant, i.e. smaller than 2.6. The non-porous dielectric material may be formed by embedding a thermally stable dielectric material such as methyl silsesquioxane, hydrogen silsesquioxane, benzocyclobutene or aromatic thermoset polymers with a second phase polymeric material therein such that, at the higher curing temperature, the second phase polymeric material substantially volatilizes to leave voids behind forming a void-filled dielectric material.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: December 14, 2004
    Assignee: International Business Machines Corporation
    Inventors: Timothy Joseph Dalton, Stephen Edward Greco, Jeffrey Curtis Hedrick, Satyanarayana V. Nitta, Sampath Purushothaman, Kenneth Parker Rodbell, Robert Rosenberg
  • Patent number: 6573606
    Abstract: In the invention an electrically isolated copper interconnect structural interface is provided involving a single, about 50-300 A thick, alloy capping layer, that controls diffusion and electromigration of the interconnection components and reduces the overall effective dielectric constant of the interconnect; the capping layer being surrounded by a material referred to in the art as hard mask material that can provide a resist for subsequent reactive ion etching operations, and there is also provided the interdependent process steps involving electroless deposition in the fabrication of the structural interface. The single layer alloy metal barrier in the invention is an alloy of the general type A—X—Y, where A is a metal taken from the group of cobalt (Co) and nickel (Ni), X is a member taken from the group of tungsten (W), tin (Sn), and silicon (Si), and Y is a member taken from the group of phosphorous (P) and boron (B); having a thickness in the range of 50 to 300 Angstroms.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: June 3, 2003
    Assignee: International Business Machines Corporation
    Inventors: Carlos Juan Sambucetti, Xiaomeng Chen, Soon-Cheon Seo, Birenda Nath Agarwala, Chao-Kun Hu, Naftali Eliahu Lustig, Stephen Edward Greco
  • Publication number: 20030057414
    Abstract: A method for forming a porous dielectric material layer in an electronic structure and the structure formed are disclosed. In the method, a porous dielectric layer in a semiconductor device can be formed by first forming a non-porous dielectric layer, then partially curing, patterning by reactive ion etching, and final curing the non-porous dielectric layer at a higher temperature than the partial curing temperature to transform the non-porous dielectric material into a porous dielectric material, thus achieving as dielectric material that has significantly improved dielectric constant, i.e. smaller than 2.6.
    Type: Application
    Filed: August 1, 2002
    Publication date: March 27, 2003
    Applicant: International Business Machines Corporation
    Inventors: Timothy Joseph Dalton, Stephen Edward Greco, Jeffrey Curtis Hedrick, Satyanarayana V. Nitta, Sampath Purushothaman, Kenneth Parker Rodbell, Robert Rosenberg
  • Publication number: 20030001275
    Abstract: In the invention an electrically isolated copper interconnect structural interface is provided involving a single, about 50-300 A thick, alloy capping layer, that controls diffusion and electromigration of the interconnection components and reduces the overall effective dielectric constant of the interconnect; the capping layer being surrounded by a material referred to in the art as hard mask material that can provide a resist for subsequent reactive ion etching operations, and there is also provided the interdependent process steps involving electroless deposition in the fabrication of the structural interface. The single layer alloy metal barrier in the invention is an alloy of the general type A-X-Y, where A is a metal taken from the group of cobalt (Co) and nickel (Ni), X is a member taken from the group of tungsten (W), tin (Sn), and silicon (Si), and Y is a member taken from the group of phosphorous (P) and boron (B); having a thickness in the range of 50 to 300 Angstroms.
    Type: Application
    Filed: June 14, 2001
    Publication date: January 2, 2003
    Inventors: Carlos Juan Sambucetti, Xiaomeng Chen, Soon-Cheon Seo, Birendra Nath Agarwala, Chao-Kun Hu, Naftali Eliahu Lustig, Stephen Edward Greco
  • Patent number: 6451712
    Abstract: A method for forming a porous dielectric material layer in an electronic structure and the structure formed are disclosed. In the method, a porous dielectric layer in a semiconductor device can be formed by first forming a non-porous dielectric layer, then partially curing, patterning by reactive ion etching, and final curing the non-porous dielectric layer at a higher temperature than the partial curing temperature to transform the non-porous dielectric material into a porous dielectric material, thus achieving a dielectric material that has significantly improved dielectric constant, i.e. smaller than 2.6.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: September 17, 2002
    Assignee: International Business Machines Corporation
    Inventors: Timothy Joseph Dalton, Stephen Edward Greco, Jeffrey Curtis Hedrick, Satyanarayana V. Nitta, Sampath Purushothaman, Kenneth Parker Rodbell, Robert Rosenberg
  • Publication number: 20020074659
    Abstract: A method for forming a porous dielectric material layer in an electronic structure and the structure formed are disclosed. In the method, a porous dielectric layer in a semiconductor device can be formed by first forming a non-porous dielectric layer, then partially curing, patterning by reactive ion etching, and final curing the non-porous dielectric layer at a higher temperature than the partial curing temperature to transform the non-porous dielectric material into a porous dielectric material, thus achieving a dielectric material that has significantly improved dielectric constant, i.e. smaller than 2.6.
    Type: Application
    Filed: December 18, 2000
    Publication date: June 20, 2002
    Applicant: International Business Machines Corporation
    Inventors: Timothy Joseph Dalton, Stephen Edward Greco, Jeffrey Curtis Hedrick, Satyanarayana V. Nitta, Sampath Purushothaman, Kenneth Parker Rodbell, Robert Rosenberg
  • Patent number: 6140234
    Abstract: Recesses in a semiconductor structure are selectively plated by providing electrical insulating layer over the semiconductor substrate and in the recesses followed by forming a conductive barrier over the insulating layer; providing a plating seed layer over the barrier layer; depositing and patterning a photoresist layer over the plating seed layer; planarizing the insulated horizontal portions by removing the horizontal portions of the seed layer between the recesses; removing the photoresist remaining in the recesses; and then electroplating the patterned seed layer with a conductive metal using the barrier layer to carry the current during the electroplating to thereby only plate on the seed layer.In an alternative process, a barrier film is deposited over recesses in an insulator. Then, relatively thick resists are lithographically defined on the field regions, on top of the barrier film over the recesses.
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: October 31, 2000
    Assignee: International Business Machines Corporation
    Inventors: Cyprian Emeka Uzoh, Stephen Edward Greco
  • Patent number: 6121129
    Abstract: A method of forming a semiconductor structure having features of differing sizes, includes forming a first layer on a semiconductor substrate; patterning only a first plurality of features of a first feature size on the first layer; removing portions of the first layer, the portions corresponding to the first plurality of features, filling the first plurality of openings; forming a second layer, the second layer overlying the first layer and the filled openings; patterning a second plurality of features of a second feature size on the second layer; removing portions of the first layer and second layer, the portions corresponding to the second plurality of features, the second plurality of openings extending through the first and second layers, and filling the second plurality openings.
    Type: Grant
    Filed: January 15, 1997
    Date of Patent: September 19, 2000
    Assignee: International Business Machines Corporation
    Inventors: Nancy Anne Greco, Stephen Edward Greco, Tina Jane Wagner
  • Patent number: 5928960
    Abstract: According to the present invention, an improved method for planarizing the surface of a dielectric or metal layer in an integrated circuit manufacturing process is disclosed. The dielectric or metal layer to be planarized is selectively patterned and etched over different regions of the surface. The size, shape, density, and depth of the patterns are determined by the pattern factor of the integrated circuit structures underlying the layer to be planarized. Further, by using the pattern factor of the underlying structures to determine the density, size, depth and placement of the surface pattern, the overall planarization process can be improved. Other empirically determined factors, such as material strength, CMP slurry temperature, and pad pressure can also be used to further refine the CMP process. By varying the pattern over the entire surface of the layer to be planarized, the CMP material removal rate can be controlled to achieve a more planar surface.
    Type: Grant
    Filed: October 24, 1996
    Date of Patent: July 27, 1999
    Assignee: International Business Machines Corporation
    Inventors: Nancy Anne Greco, Stephen Edward Greco