Patents by Inventor Stephen F. Malin

Stephen F. Malin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6777240
    Abstract: The invention provides a class of samples that model the human body. This family of samples is based upon emulsions of oil in water with lecithin acting as the emulsifier. These solutions that have varying particle sizes may be spiked with basis set components (albumin, urea and glucose) to simulate skin tissues further. The family of samples is such that other organic compounds such as collagen, elastin, globulin and bilirubin may be added, as can salts such as Na+, K+and Cl−. Layers of varying thickness with known index of refraction and particle size distributions may be generated using simple crosslinking reagents, such as collagen (gelatin). The resulting samples are flexible in each analyte's concentration and match the skin layers of the body in terms of the samples reduced scattering and absorption coefficients, &mgr;'s and &mgr;a. This family of samples is provided for use in the medical field where lasers and spectroscopy based analyzers are used in treatment of the body.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: August 17, 2004
    Assignee: Sensys Medical, Inc.
    Inventors: Kevin H. Hazen, James Matthew Welch, Stephen F. Malin, Timothy L. Ruchti, Alexander D. Lorenz, Tamara L. Troy, Suresh Thennadil, Thomas B. Blank
  • Publication number: 20030113924
    Abstract: The invention provides a class of samples that model the human body. This family of samples is based upon emulsions of oil in water with lecithin acting as the emulsifier. These solutions that have varying particle sizes may be spiked with basis set components (albumin, urea and glucose) to simulate skin tissues further. The family of samples is such that other organic compounds such as collagen, elastin, globulin and bilirubin may be added, as can salts such as Na+, K+ and Cl−. Layers of varying thickness with known index of refraction and particle size distributions may be generated using simple crosslinking reagents, such as collagen (gelatin). The resulting samples are flexible in each analyte's concentration and match the skin layers of the body in terms of the samples reduced scattering and absorption coefficients, &mgr;′s and &mgr;a. This family of samples is provided for use in the medical field where lasers and spectroscopy based analyzers are used in treatment of the body.
    Type: Application
    Filed: September 11, 2002
    Publication date: June 19, 2003
    Inventors: Kevin H. Hazen, James Matthew Welch, Stephen F. Malin, Timothy L. Ruchti, Alexander D. Lorenz, Tamara` L. Troy, Suresh Thennadil, Thomas B. Blank
  • Patent number: 6501982
    Abstract: Noninvasive instrumentation and procedures have been developed for estimating the apparent age of human and animal subjects based on the irradiation of skin tissue with near-infrared light. The method of age estimation provides additional information about primary sources of systematic tissue variability due to chronological factors and environmental exposure. Therefore, categorization of subjects on the basis of the estimated apparent age is suitable for further spectral analysis and the measurement of biological and chemical compounds, such as blood analytes. Furthermore, age determination of subjects has particular benefit in assessment of therapies used to reduce the effects of ageing in tissue and measurement of tissue damage.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: December 31, 2002
    Assignee: Sensys Medical, Inc.
    Inventors: Timothy L. Ruchti, Suresh Thennadil, Stephen F. Malin, Jessica Rennert
  • Patent number: 6493566
    Abstract: Instrumentation and procedures for noninvasively determining the sex of human and animal subjects in vivo have been developed based on the irradiation of skin tissue with near infrared light. The method of sex determination provides additional information about primary sources of systematic tissue variability, namely, the thickness of the dermis and the subcutaneous fat. Categorization of subjects on the basis of the determination is therefore suitable for further spectral analysis and the measurement of biological and chemical compounds, such as blood analytes.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: December 10, 2002
    Assignee: Instrumentation Metrics, Inc.
    Inventors: Timothy L. Ruchti, Stephen F. Malin, Suresh Thennadil, Jessica Rennert, Glenn Aaron Kees
  • Patent number: 6475800
    Abstract: The invention provides a class of samples that model the human body. This family of samples is based upon emulsions of oil in water with lecithin acting as the emulsifier. These solutions that have varying particle sizes may be spiked with basis set components (albumin, urea and glucose) to simulate skin tissues further. The family of samples is such that other organic compounds such as collagen, elastin, globulin and bilirubin may be added, as can salts such as Na+, K+ and Cl−. Layers of varying thickness with known index of refraction and particle size distributions may be generated using simple crosslinking reagents, such as collagen (gelatin). The resulting samples are flexible in each analyte's concentration and match the skin layers of the body in terms of the samples reduced scattering and absorption coefficients, &mgr;ms and &mgr;ma. This family of samples is provided for use in the medical field where lasers and spectroscopy based analyzers are used in treatment of the body.
    Type: Grant
    Filed: February 10, 2000
    Date of Patent: November 5, 2002
    Assignee: Instrumentation Metrics, Inc.
    Inventors: Kevin H. Hazen, James Matthew Welch, Stephen F. Malin, Timothy L. Ruchti, Alexander D. Lorenz, Tamara L. Troy, Suresh Thennadil, Thomas B. Blank
  • Patent number: 6405065
    Abstract: An in vivo, non-invasive method of tissue classification using near-IR (NIR) spectral measurements. A classification model is based on NIR spectral absorbance measurements from an exemplary population. Spectral features representing variation between tissue types are identified. Analytic techniques enhance the features of interest and correct spectral interference to improve the predictive ability of the classification model. A classification routine defines classes based on variation between tissue types, such that variation within a class is small compared to variation between classes. A decision rule assigns individual samples from the exemplary population to classes. An in-vivo, non-invasive procedure applies the classification model to individual tissue samples. A preferred embodiment of the invention distinguishes transgenic mice from non-transgenic individuals based on variation in fat composition within muscle tissue.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: June 11, 2002
    Assignee: Instrumentation Metrics, Inc.
    Inventors: Stephen F. Malin, Timothy L. Ruchti, Jessica Rennert
  • Patent number: 6280381
    Abstract: An intelligent system for measuring blood analytes noninvasively operates on a near infrared absorbance spectrum of in vivo skin tissue. An hierarchical architecture employs a pattern classification engine to adapt the calibration to the structural properties and physiological state of the subject as manifested in the absorbance spectrum. A priori information about the primary sources of sample variability are used to establish general categories of subjects. By applying calibration schemes specific to the various categories, the spectral interference is reduced resulting in improved prediction accuracy and parsimonious calibrations. Two classification rules are disclosed. The first rule assumes the classes are mutually exclusive and applies specific calibration models to the various subject categories. The second rule uses fuzzy set theory to develop calibration models and blood analyte predictions.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: August 28, 2001
    Assignee: Instrumentation Metrics, Inc.
    Inventors: Stephen F. Malin, Timothy L. Ruchti
  • Patent number: 6236047
    Abstract: A method is described for determining the concentration of an organic blood analyte using multi-spectral analysis in the near infrared and mid-infrared ranges. Incident radiation containing a plurality of distinct, nonoverlapping regions of wavelengths in the range of approximately 1100 to 5000 nm is used to scan a sample. Diffusively reflected radiation emerging from the sample is detected, and a value indicative of the concentration of the analyte is obtained using an application of chemometrics techniques. Information obtained from each nonoverlapping region of wavelengths can be cross-correlated in order to remove background interferences.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: May 22, 2001
    Assignee: Instrumentation Metrics, Inc.
    Inventors: Stephen F. Malin, Gamal Khalil
  • Patent number: 6115673
    Abstract: One or more basis sets are applied to a spectroscopic signal during analysis to produce an accurate spectral representation from which analyte concentration may be accurately determined. A basis set includes all interfering components found in a sample, such as serum. With regard to an analyte, such as glucose, it is necessary to define those components of a sample that have a larger interference than that of glucose. A basis set may be generated, for example, that produces a transform for the red blood cells that interfere or scatter the light; and also for skin effects. Once the spectra of all these components is known, it is then necessary to determine how each of these components interact, e.g. taking serum data, extracting each of the components, and then comparing the spectra for the individual components with that of the components in solution.
    Type: Grant
    Filed: August 14, 1997
    Date of Patent: September 5, 2000
    Assignee: Instrumentation Metrics, Inc.
    Inventors: Stephen F. Malin, Kevin H. Hazen
  • Patent number: 6040578
    Abstract: A method and apparatus are described for determining the concentration of an organic blood analyte using multi-spectral analysis in the near infrared and mid-infrared ranges. Incident radiation containing a plurality of distinct, nonoverlapping regions of wavelengths in the range of approximately 1100 to 5000 nm is used to scan a sample. Diffusively reflected radiation emerging from the sample is detected, and a value indicative of the concentration of the analyte is obtained using an application of chemometrics techniques. Information obtained from each nonoverlapping region of wavelengths can be cross-correlated in order to remove background interferences.
    Type: Grant
    Filed: February 2, 1996
    Date of Patent: March 21, 2000
    Assignee: Instrumentation Metrics, Inc.
    Inventors: Stephen F. Malin, Gamal Khalil
  • Patent number: 5945676
    Abstract: An apparatus is provided for determining the concentration of an analyte present in a sample using multi-spectral analysis in the near-infrared (NIR) range. Incident radiation containing a plurality of distinct, nonoverlapping spectral regions of wavelengths in the near-infrared range is used to irradiate the sample. Diffusively reflected radiation emerging from the sample is detected, and a value indicative of the concentration of the analyte is obtained therefrom, preferably using an application of chemometrics techniques. Information obtained from each of the nonoverlapping spectral regions of wavelengths can be cross-correlated to remove background interference.
    Type: Grant
    Filed: January 28, 1998
    Date of Patent: August 31, 1999
    Assignee: Instrumentation Metrics, Inc.
    Inventors: Gamal Khalil, Stephen F. Malin
  • Patent number: 5747806
    Abstract: The concentration of an analyte present in a sample is determined using multi-spectral analysis in the near infrared range. Incident radiation containing a plurality of distinct, nonoverlapping regions of wavelengths in the range of approximately 1100 to 3500 nm is used to scan the sample. Diffusively reflected radiation emerging from the sample is detected, and a value indicative of the concentration of the analyte is obtained using an application of chemometrics techniques. Information obtained from each nonoverlapping region of wavelengths can be cross-correlated to remove background interferences.
    Type: Grant
    Filed: February 2, 1996
    Date of Patent: May 5, 1998
    Assignee: Instrumentation Metrics, Inc
    Inventors: Gamal Khalil, Stephen F. Malin
  • Patent number: 4013411
    Abstract: A method for testing biological materials, and especially those obtained from the human body, for the presence of the hepatitis associated antigen (HAA), in which Zeise's salt, or another water soluble platinum or palladium salt containing a trans directing group which enables the noble metal-containing moiety of the salt to react with the hepatitis associated antigen (HAA) or related materials, is mixed with the material to be tested in the presence of water, causing the formation of characteristic visible turbidity in the mixture which persists after agitation if HAA is present. Any slight turbidity observed initially in normal sera disappears upon agitation if the test sample is free from the hepatitis associated antigen. Also disclosed are test reagents consisting of the platinum and palladium salts in aqueous solutions containing non-interfering stabilizing salts such as sodium and potassium chloride and equivalents.
    Type: Grant
    Filed: July 19, 1974
    Date of Patent: March 22, 1977
    Assignee: Villanova University
    Inventors: Saul I. Shupack, Stephen F. Malin