Patents by Inventor Stephen Grantz

Stephen Grantz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250114148
    Abstract: Disclosed biopsy markers are adapted to serve as localization markers during a surgical procedure. Adaptation includes incorporation of materials detectable under ultrasound during surgery, as well as features for co-registration with image guidance or other real-time imaging technologies during surgery. Such biopsy markers, when used as localization markers, improve patient comfort and reduce challenges in surgical coordination and surgery time. Additional disclosed biopsy markers are adapted to serve as monitoring and/or detection apparatuses. Localization of an implanted marker may be done with ultrasound technology. Ultrasound image data is analyzed to identify the implanted marker. A distance to the marker or a lesion may be determined and displayed. The determined distance may be a distance between the ultrasound probe and the marker or lesion, a distance between the marker or lesion and an incision instrument, and/or a distance between the ultrasound probe and the incision instrument.
    Type: Application
    Filed: September 24, 2024
    Publication date: April 10, 2025
    Applicant: Hologic, Inc.
    Inventors: John LAVIOLA, Shawn ST. PIERRE, Brian STELLMACH, Lori FONTAINE, Joseph A. STAND, III, Estefania ALVAREZ, Stephen GRANTZ, Michelle Dawn LYMAN, Shannon Marie BUTLER, Yuliya MATHIS
  • Publication number: 20240398487
    Abstract: Methods and systems providing guidance for operation of a biopsy needle based on ultrasonic imaging. Ultrasonic waves are emitted and detected by a ultrasonic transducer to generate image data. A biopsy needle is identified within the generated image data, and the biopsy needle may be in a pre-fire configuration. Based on the identification of the biopsy needle, the methods and systems may determine a predicted location of the biopsy needle based at least in part on biopsy needle properties. The predicted location of the biopsy needle may be the predicated location of the biopsy needle in its post-fire configuration. At least one indicator may be displayed indicating the determined predicted location.
    Type: Application
    Filed: June 3, 2024
    Publication date: December 5, 2024
    Applicant: Hologic, Inc.
    Inventors: Shawn ST. PIERRE, Stephen GRANTZ, Thomas FISK, Mark GUETERSLOH
  • Patent number: 12133695
    Abstract: Disclosed biopsy markers are adapted to serve as localization markers during a surgical procedure. Adaptation includes incorporation of materials detectable under ultrasound during surgery, as well as features for co-registration with image guidance or other real-time imaging technologies during surgery. Such biopsy markers, when used as localization markers, improve patient comfort and reduce challenges in surgical coordination and surgery time. Additional disclosed biopsy markers are adapted to serve as monitoring and/or detection apparatuses. Localization of an implanted marker may be done with ultrasound technology. Ultrasound image data is analyzed to identify the implanted marker. A distance to the marker or a lesion may be determined and displayed. The determined distance may be a distance between the ultrasound probe and the marker or lesion, a distance between the marker or lesion and an incision instrument, and/or a distance between the ultrasound probe and the incision instrument.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: November 5, 2024
    Assignee: Hologic, Inc.
    Inventors: John Laviola, Shawn St. Pierre, Brian Stellmach, Lori Fontaine, Joseph A. Stand, III, Estefania Alvarez, Stephen Grantz, Michelle Dawn Lyman, Shannon Marie Butler, Yuliya Mathis
  • Patent number: 12133696
    Abstract: Disclosed biopsy markers are adapted to serve as localization markers during a surgical procedure. Adaptation includes incorporation of materials detectable under ultrasound during surgery, as well as features for co-registration with image guidance or other real-time imaging technologies during surgery. Such biopsy markers, when used as localization markers, improve patient comfort and reduce challenges in surgical coordination and surgery time. Additional disclosed biopsy markers are adapted to serve as monitoring and/or detection apparatuses. Localization of an implanted marker may be done with ultrasound technology. Ultrasound image data is analyzed to identify the implanted marker. A distance to the marker or a lesion may be determined and displayed. The determined distance may be a distance between the ultrasound probe and the marker or lesion, a distance between the marker or lesion and an incision instrument, and/or a distance between the ultrasound probe and the incision instrument.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: November 5, 2024
    Assignee: Hologic, Inc.
    Inventors: John Laviola, Shawn St. Pierre, Brian Stellmach, Lori Fontaine, Joseph A. Stand, III, Estefania Alvarez, Stephen Grantz, Michelle Dawn Lyman, Shannon Marie Butler, Yuliya Mathis
  • Patent number: 12029503
    Abstract: Disclosed biopsy markers are adapted to serve as localization markers during a surgical procedure. Adaptation includes incorporation of materials detectable under ultrasound during surgery, as well as features for co-registration with image guidance or other real-time imaging technologies during surgery. Such biopsy markers, when used as localization markers, improve patient comfort and reduce challenges in surgical coordination and surgery time. Additional disclosed biopsy markers are adapted to serve as monitoring and/or detection apparatuses. Localization of an implanted marker may be done with ultrasound technology. Ultrasound image data is analyzed to identify the implanted marker. A distance to the marker or a lesion may be determined and displayed. The determined distance may be a distance between the ultrasound probe and the marker or lesion, a distance between the marker or lesion and an incision instrument, and/or a distance between the ultrasound probe and the incision instrument.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: July 9, 2024
    Assignee: Hologic, Inc.
    Inventors: John Laviola, Shawn St. Pierre, Brian Stellmach, Lori Fontaine, Joseph A. Stand, III, Estefania Alvarez, Stephen Grantz, Michelle Dawn Lyman, Shannon Marie Butler, Yuliya Mathis
  • Patent number: 12029499
    Abstract: Methods and systems providing guidance for operation of a biopsy needle based on ultrasonic imaging. Ultrasonic waves are emitted and detected by a ultrasonic transducer to generate image data. A biopsy needle is identified within the generated image data, and the biopsy needle may be in a pre-fire configuration. Based on the identification of the biopsy needle, the methods and systems may determine a predicted location of the biopsy needle based at least in part on biopsy needle properties. The predicted location of the biopsy needle may be the predicated location of the biopsy needle in its post-fire configuration. At least one indicator may be displayed indicating the determined predicted location.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: July 9, 2024
    Assignee: Hologic, Inc.
    Inventors: Shawn St. Pierre, Stephen Grantz, Thomas Fisk, Mark Guetersloh
  • Patent number: 11937886
    Abstract: Disclosed biopsy markers are adapted to serve as localization markers during a surgical procedure. Adaptation includes incorporation of materials detectable under ultrasound during surgery, as well as features for co-registration with image guidance or other real-time imaging technologies during surgery. Such biopsy markers, when used as localization markers, improve patient comfort and reduce challenges in surgical coordination and surgery time. Additional disclosed biopsy markers are adapted to serve as monitoring and/or detection apparatuses, Localization of an implanted marker may be done with ultrasound technology. Ultrasound image data is analyzed to identify the implanted marker. A distance to the marker or a lesion may be determined and displayed. The determined distance may be a distance between the ultrasound probe and the marker or lesion, a distance between the marker or lesion and an incision instrument, and/or a distance between the ultrasound probe and the incision instrument.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: March 26, 2024
    Assignee: Hologic, Inc.
    Inventors: John Laviola, Shawn St. Pierre, Brian Stellmach, Lori Fontaine, Joseph A. Stand, III, Estefania Alvarez, Stephen Grantz, Michelle Dawn Lyman, Shannon Marie Butler, Yuliya Mathis
  • Patent number: 11464585
    Abstract: Disclosed biopsy markers are adapted to serve as localization markers during a surgical procedure. Adaptation includes incorporation of materials detectable under ultrasound during surgery, as well as features for co-registration with image guidance or other real-time imaging technologies during surgery. Such biopsy markers, when used as localization markers, improve patient comfort and reduce challenges in surgical coordination and surgery time. Additional disclosed biopsy markers are adapted to serve as monitoring and/or detection apparatuses. Localization of an implanted marker may be done with ultrasound technology. Ultrasound image data is analyzed to identify the implanted marker. A distance to the marker or a lesion may be determined and displayed. The determined distance may be a distance between the ultrasound probe and the marker or lesion, a distance between the marker or lesion and an incision instrument, and/or a distance between the ultrasound probe and the incision instrument.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: October 11, 2022
    Assignee: Hologic, Inc.
    Inventors: John Laviola, Shawn St. Pierre, Brian Stellmach, Lori Fontaine, Joseph A. Stand, III, Estefania Alvarez, Stephen Grantz, Michelle Dawn Lyman, Shannon Marie Butler, Yuliya Mathis
  • Patent number: 11432883
    Abstract: Disclosed biopsy markers are adapted to serve as localization markers during a surgical procedure. Adaptation includes incorporation of materials detectable under ultrasound during surgery, as well as features for co-registration with image guidance or other real-time imaging technologies during surgery. Such biopsy markers, when used as localization markers, improve patient comfort and reduce challenges in surgical coordination and surgery time. Additional disclosed biopsy markers are adapted to serve as monitoring and/or detection apparatuses. Localization of an implanted marker may be done with ultrasound technology. Ultrasound image data is analyzed to identify the implanted marker. A distance to the marker or a lesion may be determined and displayed. The determined distance may be a distance between the ultrasound probe and the marker or lesion, a distance between the marker or lesion and an incision instrument, and/or a distance between the ultrasound probe and the incision instrument.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: September 6, 2022
    Assignee: Hologic, Inc.
    Inventors: John Laviola, Shawn St. Pierre, Brian Stellmach, Lori Fontaine, Joseph A. Stand, III, Estefania Alvarez, Stephen Grantz, Michelle Dawn Lyman, Shannon Marie Butler, Yuliya Mathis
  • Publication number: 20220110699
    Abstract: Disclosed biopsy markers are adapted to serve as localization markers during a surgical procedure. Adaptation includes incorporation of materials detectable under ultrasound during surgery, as well as features for co-registration with image guidance or other real-time imaging technologies during surgery. Such biopsy markers, when used as localization markers, improve patient comfort and reduce challenges in surgical coordination and surgery time. Additional disclosed biopsy markers are adapted to serve as monitoring and/or detection apparatuses, Localization of an implanted marker may be done with ultrasound technology. Ultrasound image data is analyzed to identify the implanted marker. A distance to the marker or a lesion may be determined and displayed. The determined distance may be a distance between the ultrasound probe and the marker or lesion, a distance between the marker or lesion and an incision instrument, and/or a distance between the ultrasound probe and the incision instrument.
    Type: Application
    Filed: December 21, 2021
    Publication date: April 14, 2022
    Inventors: John LAVIOLA, Shawn ST. PIERRE, Brian STELLMACH, Lori FONTAINE, Joseph A. STAND, III, Estefania ALVAREZ, Stephen GRANTZ, Michelle Dawn LYMAN, Shannon Marie BUTLER, Yuliya MATHIS
  • Publication number: 20220071714
    Abstract: Disclosed biopsy markers are adapted to serve as localization markers during a surgical procedure. Adaptation includes incorporation of materials detectable under ultrasound during surgery, as well as features for co-registration with image guidance or other real-time imaging technologies during surgery. Such biopsy markers, when used as localization markers, improve patient comfort and reduce challenges in surgical coordination and surgery time. Additional disclosed biopsy markers are adapted to serve as monitoring and/or detection apparatuses. Localization of an implanted marker may be done with ultrasound technology. Ultrasound image data is analyzed to identify the implanted marker. A distance to the marker or a lesion may be determined and displayed. The determined distance may be a distance between the ultrasound probe and the marker or lesion, a distance between the marker or lesion and an incision instrument, and/or a distance between the ultrasound probe and the incision instrument.
    Type: Application
    Filed: November 12, 2021
    Publication date: March 10, 2022
    Inventors: John LAVIOLA, Shawn ST. PIERRE, Brian STELLMACH, Lori FONTAINE, Joseph A. STAND, III, Estefania ALVAREZ, Stephen GRANTZ, Michelle Dawn LYMAN, Shannon Marie BUTLER, Yuliya MATHIS
  • Publication number: 20220061931
    Abstract: Disclosed biopsy markers are adapted to serve as localization markers during a surgical procedure. Adaptation includes incorporation of materials detectable under ultrasound during surgery, as well as features for co-registration with image guidance or other real-time imaging technologies during surgery. Such biopsy markers, when used as localization markers, improve patient comfort and reduce challenges in surgical coordination and surgery time. Additional disclosed biopsy markers are adapted to serve as monitoring and/or detection apparatuses. Localization of an implanted marker may be done with ultrasound technology. Ultrasound image data is analyzed to identify the implanted marker. A distance to the marker or a lesion may be determined and displayed. The determined distance may be a distance between the ultrasound probe and the marker or lesion, a distance between the marker or lesion and an incision instrument, and/or a distance between the ultrasound probe and the incision instrument.
    Type: Application
    Filed: November 11, 2021
    Publication date: March 3, 2022
    Inventors: John LAVIOLA, Shawn ST. PIERRE, Brian STELLMACH, Lori FONTAINE, Joseph A. STAND, III, Estefania ALVAREZ, Stephen GRANTZ, Michelle Dawn LYMAN, Shannon Marie BUTLER, Yuliya MATHIS
  • Publication number: 20220061930
    Abstract: Disclosed biopsy markers are adapted to serve as localization markers during a surgical procedure. Adaptation includes incorporation of materials detectable under ultrasound during surgery, as well as features for co-registration with image guidance or other real-time imaging technologies during surgery. Such biopsy markers, when used as localization markers, improve patient comfort and reduce challenges in surgical coordination and surgery time. Additional disclosed biopsy markers are adapted to serve as monitoring and/or detection apparatuses, Localization of an implanted marker may be done with ultrasound technology. Ultrasound image data is analyzed to identify the implanted marker. A distance to the marker or a lesion may be determined and displayed. The determined distance may be a distance between the ultrasound probe and the marker or lesion, a distance between the marker or lesion and an incision instrument, and/or a distance between the ultrasound probe and the incision instrument.
    Type: Application
    Filed: November 11, 2021
    Publication date: March 3, 2022
    Inventors: John LAVIOLA, Shawn ST. PIERRE, Brian STELLMACH, Lori FONTAINE, Joseph A. STAND, III, Estefania ALVAREZ, Stephen GRANTZ, Michelle Dawn LYMAN, Shannon Marie BUTLER, Yuliya MATHIS
  • Publication number: 20220039878
    Abstract: Disclosed biopsy markers are adapted to serve as localization markers during a surgical procedure. Adaptation includes incorporation of materials detectable under ultrasound during surgery, as well as features for co-registration with image guidance or other real-time imaging technologies during surgery. Such biopsy markers, when used as localization markers, improve patient comfort and reduce challenges in surgical coordination and surgery time. Additional disclosed biopsy markers are adapted to serve as monitoring and/or detection apparatuses. Localization of an implanted marker may be done with ultrasound technology. Ultrasound image data is analyzed to identify the implanted marker. A distance to the marker or a lesion may be determined and displayed. The determined distance may be a distance between the ultrasound probe and the marker or lesion, a distance between the marker or lesion and an incision instrument, and/or a distance between the ultrasound probe and the incision instrument.
    Type: Application
    Filed: October 25, 2021
    Publication date: February 10, 2022
    Inventors: John LAVIOLA, Shawn ST. PIERRE, Brian STELLMACH, Lori FONTAINE, Joseph A. STAND, III, Estefania ALVAREZ, Stephen GRANTZ, Michelle Dawn LYMAN, Shannon Marie BUTLER, Yuliya MATHIS
  • Publication number: 20220039879
    Abstract: Disclosed biopsy markers are adapted to serve as localization markers during a surgical procedure. Adaptation includes incorporation of materials detectable under ultrasound during surgery, as well as features for co-registration with image guidance or other real-time imaging technologies during surgery. Such biopsy markers, when used as localization markers, improve patient comfort and reduce challenges in surgical coordination and surgery time. Additional disclosed biopsy markers are adapted to serve as monitoring and/or detection apparatuses. Localization of an implanted marker may be done with ultrasound technology. Ultrasound image data is analyzed to identify the implanted marker. A distance to the marker or a lesion may be determined and displayed. The determined distance may be a distance between the ultrasound probe and the marker or lesion, a distance between the marker or lesion and an incision instrument, and/or a distance between the ultrasound probe and the incision instrument.
    Type: Application
    Filed: October 25, 2021
    Publication date: February 10, 2022
    Inventors: John LAVIOLA, Shawn ST. PIERRE, Brian STELLMACH, Lori FONTAINE, Joseph A. STAND, III, Estefania ALVAREZ, Stephen GRANTZ, Michelle Dawn LYMAN, Shannon Marie BUTLER, Yuliya MATHIS
  • Patent number: 11234772
    Abstract: Disclosed biopsy markers are adapted to serve as localization markers during a surgical procedure. Adaptation includes incorporation of materials detectable under ultrasound during surgery, as well as features for co-registration with image guidance or other real-time imaging technologies during surgery. Such biopsy markers, when used as localization markers, improve patient comfort and reduce challenges in surgical coordination and surgery time. Additional disclosed biopsy markers are adapted to serve as monitoring and/or detection apparatuses. Localization of an implanted marker may be done with ultrasound technology. Ultrasound image data is analyzed to identify the implanted marker. A distance to the marker or a lesion may be determined and displayed. The determined distance may be a distance between the ultrasound probe and the marker or lesion, a distance between the marker or lesion and an incision instrument, and/or a distance between the ultrasound probe and the incision instrument.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: February 1, 2022
    Assignee: Hologic, Inc.
    Inventors: John Laviola, Shawn St. Pierre, Brian Stellmach, Lori Fontaine, Joseph A. Stand, III, Estefania Alvarez, Stephen Grantz, Michelle Dawn Lyman, Shannon Marie Butler, Yuliya Mathis
  • Publication number: 20210169579
    Abstract: Disclosed biopsy markers are adapted to serve as localization markers during a surgical procedure. Adaptation includes incorporation of materials detectable under ultrasound during surgery, as well as features for co-registration with image guidance or other real-time imaging technologies during surgery. Such biopsy markers, when used as localization markers, improve patient comfort and reduce challenges in surgical coordination and surgery time. Additional disclosed biopsy markers are adapted to serve as monitoring and/or detection apparatuses. Localization of an implanted marker may be done with ultrasound technology. Ultrasound image data is analyzed to identify the implanted marker. A distance to the marker or a lesion may be determined and displayed. The determined distance may be a distance between the ultrasound probe and the marker or lesion, a distance between the marker or lesion and an incision instrument, and/or a distance between the ultrasound probe and the incision instrument.
    Type: Application
    Filed: December 11, 2018
    Publication date: June 10, 2021
    Inventors: John LAVIOLA, Shawn ST. PIERRE, Brian STELLMACH, Lori FONTAINE, Joseph A. STAND, III, Estefania ALVAREZ, Stephen GRANTZ, Michelle Dawn LYMAN, Shannon Marie BUTLER, Yuliya MATHIS
  • Publication number: 20210100626
    Abstract: Methods and systems providing guidance for operation of a biopsy needle based on ultrasonic imaging. Ultrasonic waves are emitted and detected by a ultrasonic transducer to generate image data. A biopsy needle is identified within the generated image data, and the biopsy needle may be in a pre-fire configuration. Based on the identification of the biopsy needle, the methods and systems may determine a predicted location of the biopsy needle based at least in part on biopsy needle properties. The predicted location of the biopsy needle may be the predicated location of the biopsy needle in its post-fire configuration. At least one indicator may be displayed indicating the determined predicted location.
    Type: Application
    Filed: May 3, 2019
    Publication date: April 8, 2021
    Inventors: Shawn ST. PIERRE, Stephen GRANTZ, Thomas FISK, Mark GUETERSLOH
  • Patent number: 6176698
    Abstract: A mold for forming an inflatable medical balloon having inverted conically shaped tapered regions, comprising: a mold body defining a mold cavity having an inner molding surface, and opposing first and second generally conical molding surfaces disposed along a longitudinal axis passing through the mold cavity, each of the first and second generally conical surfaces defining a frustum tapering inwardly from a base disposed perpendicular to the longitudinal axis of the mold cavity and located away from the center of the mold cavity, to an apex disposed along the longitudinal axis towards the center of the mold cavity relative to the base; and a method of molding a balloon using the mold.
    Type: Grant
    Filed: February 24, 1998
    Date of Patent: January 23, 2001
    Assignee: Medtronic AVE, Inc.
    Inventors: Stephen Grantz, Raymond E. Godaire
  • Patent number: 6129705
    Abstract: A drug or gene therapy solution delivery system including a balloon catheter having a balloon associated with a distal end of the catheter, the balloon having an exterior surface and comprising: a plurality of microencapsulated spheres containing a drug or gene therapy solution, the microencapsulated spheres being disposed about the exterior surface of the balloon so as to rupture upon application of a predetermined pressure to the balloon. In one embodiment, the microencapsulated spheres are encapsulated in a coating applied to the exterior surface of the balloon. In another embodiment, the microencapsulated spheres are extruded in the balloon.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: October 10, 2000
    Assignee: Medtronic AVE, Inc.
    Inventor: Stephen Grantz