Patents by Inventor Stephen H. Chakmakjian

Stephen H. Chakmakjian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11099307
    Abstract: An optical system including a first microstructured surface; and a second microstructured surface; wherein the first microstructured surface is aligned along an axis with the second microstructured surface is provided. An illumination system including a light source and the optical system is also included. A method of diffusing light is included.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: August 24, 2021
    Assignee: VIAVI SOLUTIONS INC.
    Inventors: Stephen H. Chakmakjian, George Michael Morris, Bradley John Ward, Tasso R. M. Sales
  • Publication number: 20200004036
    Abstract: A diffractive optical element including microstructures, along a surface of an optical material, having a phase profile to diffract input illumination into structured light of a plurality of different diffraction orders; wherein the phase profile is at least partially phase unwrapped is disclosed. Methods of generating the diffractive optical element is also disclosed.
    Type: Application
    Filed: June 27, 2019
    Publication date: January 2, 2020
    Applicant: VIAVI SOLUTIONS INC.
    Inventors: Tasso R. M. SALES, Stephen H. CHAKMAKJIAN, George Michael MORRIS
  • Publication number: 20190187341
    Abstract: An optical system including a first microstructured surface; and a second microstructured surface; wherein the first microstructured surface is aligned along an axis with the second microstructured surface is provided. An illumination system including a light source and the optical system is also included. A method of diffusing light is included.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 20, 2019
    Applicant: VIAVI SOLUTIONS INC.
    Inventors: Stephen H. CHAKMAKJIAN, George Michael MORRIS, Bradley John WARD, Tasso R. M. SALES
  • Patent number: 8369678
    Abstract: Optical devices for guiding illumination are provided each having a body of optical material with staircase or acutely angled ramp structures on its top surface for distributing light inputted from one end of the device from the front exit faces of such structures along certain angular orientations, while at least a substantial portion of the light is totally internally reflected within the body until distributed from such front exit faces. Optical devices are also provided each have a body of optical material having a bottom surface with acutely angled ramp structures and falling structures which alternate with each other, such that light is totally internally reflected within the device until reflected by such ramp structures along the bottom surface to exit the top surface of the device or transmitted through the ramp structures to an adjacent falling structure back into the device.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: February 5, 2013
    Assignee: RPC Photonics, Inc.
    Inventors: Stephen H. Chakmakjian, Donald J. Schertler, Tasso Sales, G. Michael Morris
  • Patent number: 8111968
    Abstract: Optical devices for guiding illumination are provided each having a body of optical material with staircase or acutely angled ramp structures on its top surface for distributing light inputted from one end of the device from the front exit faces of such structures along certain angular orientations, while at least a substantial portion of the light is totally internally reflected within the body until distributed from such front exit faces. Optical devices are also provided each have a body of optical material having a bottom surface with acutely angled ramp structures and falling structures which alternate with each other, such that light is totally internally reflected within the device until reflected by such ramp structures along the bottom surface to exit the top surface of the device or transmitted through the ramp structures to an adjacent falling structure back into the device.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: February 7, 2012
    Assignee: RPC Photonics, Inc.
    Inventors: Stephen H. Chakmakjian, Donald J. Schertler, Tasso Sales, G. Michael Morris
  • Patent number: 7918583
    Abstract: Lighting devices are provided for efficiently distributing light over an area to provided uniform illumination over a wide angle or other tailored illumination patterns. Each light device has at least one light source, at least one collimator for partially collimating light from the light source, and at least one diffuser for diffusing light from the collimator. The diffuser provides diffused light over an area from the diffuser having an intensity that is angularly dependent in accordance with the angular distribution intensity of light outputted from the collimator, so as to provide a predetermined illumination pattern from the device. The light sources and collimators may be provided in one or two-dimensional arrays, and a single diffuser may be formed on each collimator or the diffuser may be along a plate spaced from the collimators.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: April 5, 2011
    Assignee: RPC Photonics, Inc.
    Inventors: Stephen H. Chakmakjian, Donald J. Schertler, Tasso Sales, G. Michael Morris
  • Publication number: 20100027288
    Abstract: Optical devices for guiding illumination are provided each having a body of optical material with staircase or acutely angled ramp structures on its top surface for distributing light inputted from one end of the device from the front exit faces of such structures along certain angular orientations, while at least a substantial portion of the light is totally internally reflected within the body until distributed from such front exit faces. Optical devices are also provided each have a body of optical material having a bottom surface with acutely angled ramp structures and falling structures which alternate with each other, such that light is totally internally reflected within the device until reflected by such ramp structures along the bottom surface to exit the top surface of the device or transmitted through the ramp structures to an adjacent falling structure back into the device.
    Type: Application
    Filed: July 27, 2009
    Publication date: February 4, 2010
    Inventors: Stephen H. Chakmakjian, Donald J. Schertler, Tasso Sales, G. Michael Morris
  • Publication number: 20090297113
    Abstract: Optical devices for guiding illumination are provided each having a body of optical material with staircase or acutely angled ramp structures on its top surface for distributing light inputted from one end of the device from the front exit faces of such structures along certain angular orientations, while at least a substantial portion of the light is totally internally reflected within the body until distributed from such front exit faces. Optical devices are also provided each have a body of optical material having a bottom surface with acutely angled ramp structures and falling structures which alternate with each other, such that light is totally internally reflected within the device until reflected by such ramp structures along the bottom surface to exit the top surface of the device or transmitted through the ramp structures to an adjacent falling structure back into the device.
    Type: Application
    Filed: July 27, 2009
    Publication date: December 3, 2009
    Inventors: Stephen H. Chakmakjian, Donald J. Shertler, Tasso Sales, G. Michael Morris
  • Patent number: 7593615
    Abstract: Optical devices for guiding illumination are provided each having a body of optical material with staircase or acutely angled ramp structures on its top surface for distributing light inputted from one end of the device from the front exit faces of such structures along certain angular orientations, while at least a substantial portion of the light is totally internally reflected within the body until distributed from such front exit faces. Optical devices are also provided each have a body of optical material having a bottom surface with acutely angled ramp structures and falling structures which alternate with each other, such that light is totally internally reflected within the device until reflected by such ramp structures along the bottom surface to exit the top surface of the device or transmitted through the ramp structures to an adjacent falling structure back into the device.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: September 22, 2009
    Assignee: RPC Photonics, Inc.
    Inventors: Stephen H. Chakmakjian, Donald J. Schertler, Tasso Sales, G. Michael Morris
  • Publication number: 20080043466
    Abstract: Lighting devices are provided for efficiently distributing light over an area to provided uniform illumination over a wide angle or other tailored illumination patterns. Each light device has at least one light source, at least one collimator for partially collimating light from the light source, and at least one diffuser for diffusing light from the collimator. The diffuser provides diffused light over an area from the diffuser having an intensity that is angularly dependent in accordance with the angular distribution intensity of light outputted from the collimator, so as to provide a predetermined illumination pattern from the device. The light sources and collimators may be provided in one or two-dimensional arrays, and a single diffuser may be formed on each collimator or the diffuser may be along a plate spaced from the collimators.
    Type: Application
    Filed: August 16, 2006
    Publication date: February 21, 2008
    Inventors: Stephen H. Chakmakjian, Donald J. Schertler, Tasso Sales, G. Michael Morris
  • Publication number: 20020131699
    Abstract: A method for aligning optical fibers to a lens array is provided, including, providing a planar reflective surface facing the front surface of lens array, locating one end of a fiber adjacent the back surface of the substrate upon which the lens array is formed or integrated to face one of the lenses of the array, propagating light through the fiber and the lens facing the fiber to the planar reflective surface, receiving returned reflected light from the reflective surface through the fiber and the lens facing the fiber, and then adjusting the position of the fiber to change the amount of the returned reflected light received by the fiber to determine when the fiber is at a position which provides a maximum amount or power of the returned reflected light, thereby aligning the end of the fiber to the focal point of the lens. The fiber is attached to the substrate at that position, such as by an adhesive material, and the method repeated for each fiber to a different lens of the array.
    Type: Application
    Filed: April 30, 2001
    Publication date: September 19, 2002
    Inventors: Daniel H. Raguin, Theodore J. Tiberio, Bradley J. Ward, Stephen H. Chakmakjian, Nestor O. Farmiga
  • Patent number: 5784164
    Abstract: A method and improved system for automatically and substantially simultaneously focusing and orienting an interferometric optical system, such as an interferometric microscope (25) illuminated by broad-band light, with regard to a surface under test (66), for providing a best focus and orientation of objects to be measured. The optical system (20, 25, 30, 35, 37, 60, 40) includes a pixel array, such as a sparse array (30) onto which an interferogram is imaged. The pixel array (30) is scanned (20, 25) for detecting a peak fringe contrast for the pixels in the array (30) and the scan position at the detected peak fringe contrast for each pixel int he array (30) is saved (40).
    Type: Grant
    Filed: March 20, 1997
    Date of Patent: July 21, 1998
    Assignee: Zygo Corporation
    Inventors: Leslie L. Deck, Stephen H. Chakmakjian
  • Patent number: 5500865
    Abstract: Optical frequency doubling apparatus is disclosed having a system output portion and a source of coherent radiation together with a plurality of discreet nonlinear light transmissive devices positioned in series between the source of coherent radiation and the system output portion, and further including a phase shifter positioned in series with the nonlinear light transmissive devices for altering the phase of light wavefronts passing therethrough. A harmonic beamsplitter is used to separate the frequency doubled output from the coherent light inputted into the system by the source of coherent radiation.
    Type: Grant
    Filed: September 13, 1994
    Date of Patent: March 19, 1996
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Stephen H. Chakmakjian, Mark T. Gruneisen, Karl W. Koch, III, Gerald T. Moore