Patents by Inventor Stephen Hamann

Stephen Hamann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11958738
    Abstract: An optical system including a dual-layer microelectromechanical systems (MEMS) device, and methods of fabricating and operating the same are disclosed. Generally, the MEMS device includes a substrate having an upper surface; a top modulating layer including a number of light modulating micro-ribbons, each micro-ribbon supported above and separated from the upper surface of the substrate by spring structures in at least one lower actuating layer; and a mechanism for moving one or more of the micro-ribbons relative to the upper surface and/or each other. The spring structures are operable to enable the light modulating micro-ribbons to move continuously and vertically relative to the upper surface of the substrate while maintaining the micro-ribbons substantially parallel to one another and the upper surface of the substrate. The micro-ribbons can be reflective, transmissive, partially reflective/transmissive, and the device is operable to modulate a phase and/or amplitude of light incident thereon.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: April 16, 2024
    Assignee: SILICON LIGHT MACHINES CORPORATION
    Inventors: Olav Solgaard, Stephen Hamann, Alexander Payne, Lars Eng, James Hunter, Tianbo Liu
  • Patent number: 11933962
    Abstract: Spatial light modulators (SLMs) and systems using same are described. Generally, the system includes a laser, a fixture holding a workpiece to be processed using the laser, illumination optics to illuminate the SLM with laser light, imaging optics to focus modulated light from the SLM onto the workpiece, and a controller to control the laser, the SLM, imaging optics and the fixture to scan the modulated light across a workpiece surface. The SLM includes an array of microelectromechanical system based diffractors, each including an electrostatically deflectable member coupled to a first light reflective surface and to bring light reflected from the first light reflective surface into interference with light reflected from a second light reflective surface in the SLM. The controller is operable to provide analog gray-scale control of an intensity of modulated light reflected from each diffractor by controlling an electrostatic force generated by a driver coupled thereto.
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: March 19, 2024
    Inventors: Stephen Hamann, Alexander Payne, Lars Eng, James Hunter, Tianbo Liu, Gregory Jacob
  • Publication number: 20230022807
    Abstract: An optical system including a dual-layer microelectromechanical systems (MEMS) device, and methods of fabricating and operating the same are disclosed. Generally, the MEMS device includes a substrate having an upper surface; a top modulating layer including a number of light modulating micro-ribbons, each micro-ribbon supported above and separated from the upper surface of the substrate by spring structures in at least one lower actuating layer; and a mechanism for moving one or more of the micro-ribbons relative to the upper surface and/or each other. The spring structures are operable to enable the light modulating micro-ribbons to move continuously and vertically relative to the upper surface of the substrate while maintaining the micro-ribbons substantially parallel to one another and the upper surface of the substrate. The micro-ribbons can be reflective, transmissive, partially reflective/transmissive, and the device is operable to modulate a phase and/or amplitude of light incident thereon.
    Type: Application
    Filed: July 25, 2022
    Publication date: January 26, 2023
    Applicant: SILICON LIGHT MACHINES CORPORATION
    Inventors: Olav Solgaard, Stephen Hamann, Alexander Payne, Lars Eng, James Hunter, Tianbo Liu
  • Publication number: 20220291500
    Abstract: Microelectromechanical systems based spatial light modulators (SLMs), and display systems and methods for operating the same are described. Generally, the SLM includes a linear array of a number of electrostatically deflectable ribbons suspended over a surface of a substrate. Each ribbon includes a split-ribbon portion with a plurality of diffractors, each diffractor including a first light reflective surface on a linear portion of the split-ribbon portion and an opening through which a second light reflective surface affixed to the substrate is exposed. The first light reflective surface and the second light reflective surface have equal areas, and when one or more of the ribbons is deflected towards the surface of the substrate a coherent light reflected from the first light reflective surface is brought into constructive or destructive interference with light reflected from the second light reflective surface. The display system can include a projector or a head mounted unit.
    Type: Application
    Filed: March 8, 2022
    Publication date: September 15, 2022
    Applicant: SILICON LIGHT MACHINES CORPORATION
    Inventors: Olav Solgaard, Alexander Payne, James Hunter, Stephen Hamann
  • Publication number: 20220260687
    Abstract: Optical systems including Microelectromechanical System devices (MEMS) phased-arrays and methods for operating the same to improve contrast are provided. Generally, the system includes a light source, illumination optics, and MEMS phased-arrays operable to receive a light-beam from the illumination optics and to project light onto a far-field scene and to steer an area of illumination over the far-field scene by modulating phases of at least some light of the light-beam received from the illumination optics. The illumination optics are operable to illuminate the MEMS-phased arrays with a light-beam having a Gaussian-profile to minimize side-lobes with respect to a main-lobe in an emission profile of light reflected from the far field scene in response to the projected light. In some embodiments the system is or is included in a Light Detection and Ranging system.
    Type: Application
    Filed: February 11, 2022
    Publication date: August 18, 2022
    Applicant: SILICON LIGHT MACHINES CORPORATION
    Inventors: Stephen Hamann, Olav Solgaard
  • Publication number: 20220250188
    Abstract: A laser marking system including a spatial light modulator (SLM) with a multi-pixel, linear array of is microelectromechanical systems (MEMS) based diffractors, and methods of operating the same are disclosed. Generally, the system includes, in addition to the SLM, a laser operable to illuminate the SLM; imaging optics operable to focus a substantially linear swath of modulated light onto a surface of a workpiece, the linear swath including light from multiple pixels of the SLM, and a controller operable to control the SLM, laser and imaging optics to mark the surface of the workpiece to record a two-dimensional image thereon. In one embodiment, the diffractors include a number of electrostatically deflectable ribbons suspended over a substrate. In another, each diffractor is two-dimensional including an electrostatically deflectable first reflective operable to brought into optical interference with light reflected from a second reflective surface on a faceplate, or an adjacent diffractor.
    Type: Application
    Filed: February 3, 2022
    Publication date: August 11, 2022
    Applicant: SILICON LIGHT MACHINES CORPORATION
    Inventors: Gregory Jacob, Stephen Hamann, Alexander Payne, Lars Eng, James Hunter
  • Publication number: 20220252862
    Abstract: Spatial light modulators (SLMs) and systems using same are described. Generally, the system includes a laser, a fixture holding a workpiece to be processed using the laser, illumination optics to illuminate the SLM with laser light, imaging optics to focus modulated light from the SLM onto the workpiece, and a controller to control the laser, the SLM, imaging optics and the fixture to scan the modulated light across a workpiece surface. The SLM includes an array of microelectromechanical system based diffractors, each including an electrostatically deflectable member coupled to a first light reflective surface and to bring light reflected from the first light reflective surface into interference with light reflected from a second light reflective surface in the SLM. The controller is operable to provide analog gray-scale control of an intensity of modulated light reflected from each diffractor by controlling an electrostatic force generated by a driver coupled thereto.
    Type: Application
    Filed: February 3, 2022
    Publication date: August 11, 2022
    Applicant: SILICON LIGHT MACHINES CORPORATION
    Inventors: Stephen Hamann, Alexander Payne, Lars Eng, James Hunter, Tianbo Liu, Gregory Jacob
  • Publication number: 20210072531
    Abstract: An optical scanner including micro-electromechanical system phased-arrays suitable for use in a LiDAR system, and methods of operating the same are described. Generally, the scanner includes an optical transmitter having first phased-arrays to receive light from a light source, form a swath of illumination in a far field scene and to modulate phases of the light to sweep or steer the swath over the scene in two-dimensions (2D). An optical receiver in the scanner includes second phased-arrays to receive light from the far field scene and direct at least some of the light onto a detector. The second phased-arrays are configured to de-scan the received light by directing light reflected from the far field scene onto the detector while rejecting background light. In one embodiment the second phased-arrays direct light from a slice of the far field scene onto a 1D detector array.
    Type: Application
    Filed: August 24, 2020
    Publication date: March 11, 2021
    Applicant: SCREEN HOLDINGS CO., LTD.
    Inventors: Yuki Ashida, Stephen Hamann, Olav Solgaard, Alexander Payne, Lars Eng, James Hunter
  • Publication number: 20140032382
    Abstract: The compensation recommendation system disclosed herein allows a user to determine compensations for a plurality of tasks, determine tasks performed by a user on one or more of the plurality of tasks, determine time spent by a user on the one or more of the plurality of tasks, and determine the reasonable compensation of the user using the compensations for the one or more of the plurality of tasks and the time spent by the user on the one or more of the plurality of tasks. The compensation recommendation system may be used by a business owner to determine reasonable compensation based on time spent on a number of tasks.
    Type: Application
    Filed: July 30, 2013
    Publication date: January 30, 2014
    Applicant: Platypus Business Systems, Inc.
    Inventors: Paul Stephen Hamann, Richard L. Perry