Patents by Inventor Stephen Hardman

Stephen Hardman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240116908
    Abstract: Methods for preparing a variety of bryostatin compounds are provided. The subject methods provide for preparation of bryostatin 1 in multi-gram quantities in a low and unprecedented number of convergent synthetic steps from commercially available materials. The subject methods are scalable with low estimated material costs and can provide enough material to meet clinical needs. Also provided are a variety of bryostatin analog compounds, and prodrug forms thereof, which are synthetically accessible via the subject methods and pharmaceutical compositions including the same.
    Type: Application
    Filed: September 1, 2023
    Publication date: April 11, 2024
    Inventors: Paul Wender, Ryan Quiroz, Stephen Ho, Akira Shimizu, Steven Ryckbosch, Matthew C. Stevens, Matthew S. Jeffreys, Clayton Hardman, Jack Sloane
  • Publication number: 20110236293
    Abstract: The present invention relates to an integrated synthesis gas refinery plant and a process for the simultaneous production from a single synthesis gas stream X of a hydrogen stream useful for the production of ammonia, a hydrogen rich synthesis gas stream useful for the production of methanol, and a hydrogen depleted synthesis gas stream useful for the production of hydrocarbons.
    Type: Application
    Filed: December 10, 2009
    Publication date: September 29, 2011
    Inventors: Stephen Hardman, Hui See Yap
  • Patent number: 6096106
    Abstract: An endothermic reaction furnace includes one or more elongated reaction tubes defining therein an endothermic reaction flow path and a combustion flow path for providing heat to drive the endothermic reaction. The combustion flow path is arranged so that fuel and combustion air are separately heated by the heat inside the furnace preferably to significantly above their autoignition temperature before being combined in a combustion zone where they mix, autoignite and burn. The fuel is introduced into the combustion zone by a plurality of tubes having outlet ends arranged to produce annular shrouds of flame around each reaction tube that are directed countercurrent to the endothermic reaction product.
    Type: Grant
    Filed: February 3, 1998
    Date of Patent: August 1, 2000
    Assignee: The Standard Oil Company
    Inventors: Robert C. Ruhl, Stephen Hardman, Michael R. Kenyon, Roderick A. McFarlane
  • Patent number: 5565009
    Abstract: An endothermic reaction furnace includes one or more elongated tubes defining therein an endothermic reaction flow path and a combustion flow path for providing heat to drive the endothermic reaction. The combustion flow path is arranged so that fuel and combustion air are separately heated by the heat inside the furnace to significantly above their autoignition temperature before being combined in a combustion zone where they mix, autoignite and burn.
    Type: Grant
    Filed: May 23, 1994
    Date of Patent: October 15, 1996
    Assignee: The Standard Oil Company
    Inventors: Robert C. Ruhl, Stephen Hardman, Michael R. Kenyon, Roderick A. McFarlane
  • Patent number: 5481052
    Abstract: This invention relates to a process for cracking waste polymers in a fluidized bed reactor to produce vaporous products comprising primary products which can be further processed, eg in a steam cracker to produce olefins, characterized in that the vaporous products are treated to generate a primary product substantially free of a high molecular weight tail having molecular weights >700 prior to further processing. The removal of the high molecular weight tail minimizes fouling and prolongs the lifetime of the reactors used for further processing.
    Type: Grant
    Filed: April 8, 1993
    Date of Patent: January 2, 1996
    Assignee: BP Chemicals Limited
    Inventors: Stephen Hardman, Stephen A. Leng, David C. Wilson