Patents by Inventor Stephen Harold Roby

Stephen Harold Roby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150337087
    Abstract: The present disclosure generally relates to removing metals from liquid-phase pyrolysis oil, such as at or near room temperatures. Specifically, some embodiments of the disclosure relate to a method and a system for removing metals from pyrolysis oil using acidic ion-exchange resins. One embodiment relates to a method for removing metals from pyrolysis oil comprising combining pyrolysis oil and an organic solvent to form a pyrolysis oil mixture and removing metal from the pyrolysis oil mixture to produce a reduced metal content pyrolysis oil mixture. In some embodiments, the removing of the metal uses a strongly acid ion-exchange resin.
    Type: Application
    Filed: August 5, 2015
    Publication date: November 26, 2015
    Applicant: Chevron U.S.A. Inc.
    Inventors: Guangci Zhou, Stephen Harold Roby, Christopher W. Kuehler
  • Patent number: 8992769
    Abstract: Trace amount levels of heavy metals such as mercury in crude oil are reduced by contacting the crude oil with a sufficient amount of a reducing agent to convert at least a portion of the non-volatile mercury into a volatile form of mercury, which can be subsequently removed by any of stripping, scrubbing, adsorption, and combinations thereof. In one embodiment, at least 50% of the mercury is removed. In another embodiment, the removal rate is at least 99%. In one embodiment, the reducing agent is selected from sulfur compounds containing at least one sulfur atom having an oxidation state less than +6; ferrous compounds; stannous compounds; oxalates; cuprous compounds; organic acids which decompose to form CO2 and/or H2 upon heating; hydroxylamine compounds; hydrazine compounds; sodium borohydride; diisobutylaluminium hydride; thiourea; transition metal halides; and mixtures thereof.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: March 31, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis John O'Rear, Russell Evan Cooper, Sujin Yean, Stephen Harold Roby, Hosna Mogaddedi, Manuel Eduardo Quintana, Jerry Max Rovner
  • Publication number: 20140058147
    Abstract: The present invention is directed to preparing distillate fuel having almost no oxygen and no carbon-to-carbon double bonds. The method comprises passing biodiesel and/or lipids derived from vegetable oils, algae oils, and/or animal fats over bio-feedstock, or lipids, conversion catalyst that performs the hydrocarbon isomerization function, removes oxygen from the feedstock, cracks off the C3 backbone, and saturates double bonds. The process is a single step process eliminating the need of a separate costly hydrotreating step while producing a renewable source distillate fuel.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 27, 2014
    Applicant: Chevron U.S.A. Inc.
    Inventors: Guangci Zhou, William James Cannella, Stephen Harold Roby
  • Publication number: 20140058148
    Abstract: The present invention is directed to preparing distillate fuel having almost no oxygen and no carbon-to-carbon double bonds. The method comprises passing biodiesel and/or lipids derived from vegetable oils, algae oils, and/or animal fats over a bio-feedstock, or lipids, conversion catalyst that performs the hydrocarbon isomerization function, removes oxygen from the feedstock, cracks off the C3 backbone, and saturates double bonds. The process is a single step process eliminating the need of a separate costly hydrotreating step while producing a renewable source distillate fuel.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 27, 2014
    Applicant: Chevron U.S.A. Inc.
    Inventors: Guangci Zhou, William James Cannella, Stephen Harold Roby
  • Publication number: 20130306521
    Abstract: Trace amount levels of heavy metals such as mercury in crude oil are reduced by contacting the crude oil with a sufficient amount of a reducing agent to convert at least a portion of the non-volatile mercury into a volatile form of mercury, which can be subsequently removed by any of stripping, scrubbing, adsorption, and combinations thereof. In one embodiment, at least 50% of the mercury is removed. In another embodiment, the removal rate is at least 99%. In one embodiment, the reducing agent is selected from sulfur compounds containing at least one sulfur atom having an oxidation state less than +6; ferrous compounds; stannous compounds; oxalates; cuprous compounds; organic acids which decompose to form CO2 and/or H2 upon heating; hydroxylamine compounds; hydrazine compounds; sodium borohydride; diisobutylaluminium hydride; thiourea; transition metal halides; and mixtures thereof.
    Type: Application
    Filed: May 16, 2013
    Publication date: November 21, 2013
    Inventors: Dennis John O'Rear, Russell Evan Cooper, Sujin Yean, Stephen Harold Roby, Hosna Mogaddedi, Manuel Eduardo Quintana, Jerry Max Rovner
  • Publication number: 20120283491
    Abstract: A renewable fuel blend and a process for producing a renewable fuel blend are described. The blend includes biologically derived C13 to C18 normal paraffins, which are provided to the blend in quantities such that blend does not require a pour point reducing treatment to achieve a low pour point. In embodiments, the normal paraffins are produced in an upgrading process, such as a hydrotreating process.
    Type: Application
    Filed: May 4, 2011
    Publication date: November 8, 2012
    Applicant: Chevron U.S.A. Inc.
    Inventors: Guangci Zhou, Stephen Harold Roby, Rebecca Brafman