Patents by Inventor Stephen Horne
Stephen Horne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250021235Abstract: Disclosed herein are techniques for implementing high-throughput low-latency hybrid memory modules with improved data backup and restore throughput, enhanced non-volatile memory controller (NVC) resource access, and enhanced mode register setting programmability. Embodiments comprise a command replicator to generate sequences of one or more DRAM read and/or write and/or other commands to be executed in response to certain local commands from a non-volatile memory controller (NVC) during data backup and data restore operations. Other embodiments comprise an access engine to enable an NVC in a host control mode to trigger entry into a special mode and issue commands to access a protected register space. Some embodiments comprise a mode register controller to capture and store the data comprising mode register setting commands issued during a host control mode, such that an NVC can program the DRAM mode registers in an NVC control mode.Type: ApplicationFiled: August 5, 2024Publication date: January 16, 2025Inventors: Aws Shallal, Micheal Miller, Stephen Horn
-
Publication number: 20240370072Abstract: A method of powering distributed computing units by a fuel gas stream originating from an underwater oil well below the ocean includes transporting, by at least one floating vessel, a power production system, a communications system and a power consumption system to an offshore drilling platform, the offshore drilling platform including a pipeline transporting natural gas originating from the underwater oil well; receiving, by the power production system, a fuel gas stream from the pipeline comprising a fuel gas; generating, by the power production system, from the fuel gas, an electrical output; and powering, by the power production system, via the electrical output, a plurality of distributed computing units of a power consumption system.Type: ApplicationFiled: March 14, 2024Publication date: November 7, 2024Inventors: Charles Cavness, Kenneth Parker, Stephen Horn, Jeff Balkanski, Anna Landler
-
Patent number: 12079486Abstract: Disclosed herein are techniques for implementing high-throughput low-latency hybrid memory modules with improved data backup and restore throughput, enhanced non-volatile memory controller (NVC) resource access, and enhanced mode register setting programmability. Embodiments comprise a command replicator to generate sequences of one or more DRAM read and/or write and/or other commands to be executed in response to certain local commands from a non-volatile memory controller (NVC) during data backup and data restore operations. Other embodiments comprise an access engine to enable an NVC in a host control mode to trigger entry into a special mode and issue commands to access a protected register space. Some embodiments comprise a mode register controller to capture and store the data comprising mode register setting commands issued during a host control mode, such that an NVC can program the DRAM mode registers in an NVC control mode.Type: GrantFiled: June 22, 2023Date of Patent: September 3, 2024Assignee: Rambus Inc.Inventors: Aws Shallal, Micheal Miller, Stephen Horn
-
Publication number: 20230409205Abstract: Disclosed herein are techniques for implementing high-throughput low-latency hybrid memory modules with improved data backup and restore throughput, enhanced non-volatile memory controller (NVC) resource access, and enhanced mode register setting programmability. Embodiments comprise a command replicator to generate sequences of one or more DRAM read and/or write and/or other commands to be executed in response to certain local commands from a non-volatile memory controller (NVC) during data backup and data restore operations. Other embodiments comprise an access engine to enable an NVC in a host control mode to trigger entry into a special mode and issue commands to access a protected register space. Some embodiments comprise a mode register controller to capture and store the data comprising mode register setting commands issued during a host control mode, such that an NVC can program the DRAM mode registers in an NVC control mode.Type: ApplicationFiled: June 22, 2023Publication date: December 21, 2023Inventors: Aws Shallal, Micheal Miller, Stephen Horn
-
Patent number: 11687247Abstract: Disclosed herein are techniques for implementing high-throughput low-latency hybrid memory modules with improved data backup and restore throughput, enhanced non-volatile memory controller (NVC) resource access, and enhanced mode register setting programmability. Embodiments comprise a command replicator to generate sequences of one or more DRAM read and/or write and/or other commands to be executed in response to certain local commands from a non-volatile memory controller (NVC) during data backup and data restore operations. Other embodiments comprise an access engine to enable an NVC in a host control mode to trigger entry into a special mode and issue commands to access a protected register space. Some embodiments comprise a mode register controller to capture and store the data comprising mode register setting commands issued during a host control mode, such that an NVC can program the DRAM mode registers in an NVC control mode.Type: GrantFiled: June 4, 2021Date of Patent: June 27, 2023Assignee: Rambus Inc.Inventors: Aws Shallal, Michael Miller, Stephen Horn
-
Publication number: 20230175651Abstract: There is provided a release valve for releasing fluid from a source of compressed fluid for inflating an inflatable structure, comprising: a housing comprising an inlet for coupling to a source of compressed fluid, and an outlet; a flow chamber disposed within the housing and forming part of a flow path from the inlet to the outlet; a valve member configured to move to a release position to permit fluid to flow from the inlet to the flow chamber; and an actuator and a biasing device, wherein the actuator and the biasing device are disposed in the flow chamber, the actuator configured to move through the flow chamber from an unactuated position to an actuated position to move the valve member to the release position.Type: ApplicationFiled: December 7, 2022Publication date: June 8, 2023Applicant: LEAFIELD MARINE LIMITEDInventors: Stephen HORN, Wayne YOUNG, Steven SOBEK, David DICKINS, Nicholas LOCKETT, Jeff VICKERS
-
Publication number: 20210357131Abstract: Disclosed herein are techniques for implementing high-throughput low-latency hybrid memory modules with improved data backup and restore throughput, enhanced non-volatile memory controller (NVC) resource access, and enhanced mode register setting programmability. Embodiments comprise a command replicator to generate sequences of one or more DRAM read and/or write and/or other commands to be executed in response to certain local commands from a non-volatile memory controller (NVC) during data backup and data restore operations. Other embodiments comprise an access engine to enable an NVC in a host control mode to trigger entry into a special mode and issue commands to access a protected register space. Some embodiments comprise a mode register controller to capture and store the data comprising mode register setting commands issued during a host control mode, such that an NVC can program the DRAM mode registers in an NVC control mode.Type: ApplicationFiled: June 4, 2021Publication date: November 18, 2021Inventors: Aws Shallal, Michael Miller, Stephen Horn
-
Patent number: 11036398Abstract: Disclosed herein are techniques for implementing high-throughput low-latency hybrid memory modules with improved data backup and restore throughput, enhanced non-volatile memory controller (NVC) resource access, and enhanced mode register setting programmability. Embodiments comprise a command replicator to generate sequences of one or more DRAM read and/or write and/or other commands to be executed in response to certain local commands from a non-volatile memory controller (NVC) during data backup and data restore operations. Other embodiments comprise an access engine to enable an NVC in a host control mode to trigger entry into a special mode and issue commands to access a protected register space. Some embodiments comprise a mode register controller to capture and store the data comprising mode register setting commands issued during a host control mode, such that an NVC can program the DRAM mode registers in an NVC control mode.Type: GrantFiled: August 8, 2019Date of Patent: June 15, 2021Assignee: Rambus, Inc.Inventors: Aws Shallal, Michael Miller, Stephen Horn
-
Publication number: 20200233684Abstract: A method of running an application on a computing device, in which the computing device runs a first operating system (11; 31) (such as a thin web client operating system, such as Chrome OS) and the application runs on a second operating system (13; 33) (such as a fully-fledged operating system, such as Microsoft Windows®, Mac OS X®, Linux®), the computing device comprising storage (7) and a processor (2), the method comprising: loading an container package (12; 32) into the storage (7) and executing the container package (12; 32) on the processor (7), the container package (12; 32) acting as an emulator for the second operating system (13; 33); installing into the container package (12; 32) at least one application package (15; 35) each containing application code for the second operating system (13; 33); and running each application package (15; 35) on the processor (7), with the container package(12; 32) translating any requests that the application code makes to the second operating system (13;33) into coType: ApplicationFiled: September 13, 2016Publication date: July 23, 2020Inventors: Stephen Horne, Peter Von Oven, Fabian Hemmer
-
Publication number: 20200034046Abstract: Disclosed herein are techniques for implementing high-throughput low-latency hybrid memory modules with improved data backup and restore throughput, enhanced non-volatile memory controller (NVC) resource access, and enhanced mode register setting programmability. Embodiments comprise a command replicator to generate sequences of one or more DRAM read and/or write and/or other commands to be executed in response to certain local commands from a non-volatile memory controller (NVC) during data backup and data restore operations. Other embodiments comprise an access engine to enable an NVC in a host control mode to trigger entry into a special mode and issue commands to access a protected register space. Some embodiments comprise a mode register controller to capture and store the data comprising mode register setting commands issued during a host control mode, such that an NVC can program the DRAM mode registers in an NVC control mode.Type: ApplicationFiled: August 8, 2019Publication date: January 30, 2020Inventors: Aws Shallal, Michael Miller, Stephen Horn
-
Patent number: 10379752Abstract: Disclosed herein are techniques for implementing high-throughput low-latency hybrid memory modules with improved data backup and restore throughput, enhanced non-volatile memory controller (NVC) resource access, and enhanced mode register setting programmability. Embodiments comprise a command replicator to generate sequences of one or more DRAM read and/or write and/or other commands to be executed in response to certain local commands from a non-volatile memory controller (NVC) during data backup and data restore operations. Other embodiments comprise an access engine to enable an NVC in a host control mode to trigger entry into a special mode and issue commands to access a protected register space. Some embodiments comprise a mode register controller to capture and store the data comprising mode register setting commands issued during a host control mode, such that an NVC can program the DRAM mode registers in an NVC control mode.Type: GrantFiled: July 23, 2018Date of Patent: August 13, 2019Assignee: Rambus Inc.Inventors: Aws Shallal, Michael Miller, Stephen Horn
-
Publication number: 20190042105Abstract: Disclosed herein are techniques for implementing high-throughput low-latency hybrid memory modules with improved data backup and restore throughput, enhanced non-volatile memory controller (NVC) resource access, and enhanced mode register setting programmability. Embodiments comprise a command replicator to generate sequences of one or more DRAM read and/or write and/or other commands to be executed in response to certain local commands from a non-volatile memory controller (NVC) during data backup and data restore operations. Other embodiments comprise an access engine to enable an NVC in a host control mode to trigger entry into a special mode and issue commands to access a protected register space. Some embodiments comprise a mode register controller to capture and store the data comprising mode register setting commands issued during a host control mode, such that an NVC can program the DRAM mode registers in an NVC control mode.Type: ApplicationFiled: July 23, 2018Publication date: February 7, 2019Inventors: Aws Shallal, Michael Miller, Stephen Horn
-
Patent number: 10031677Abstract: Disclosed herein are techniques for implementing high-throughput low-latency hybrid memory modules with improved data backup and restore throughput, enhanced non-volatile memory controller (NVC) resource access, and enhanced mode register setting programmability. Embodiments comprise a command replicator to generate sequences of one or more DRAM read and/or write and/or other commands to be executed in response to certain local commands from a non-volatile memory controller (NVC) during data backup and data restore operations. Other embodiments comprise an access engine to enable an NVC in a host control mode to trigger entry into a special mode and issue commands to access a protected register space. Some embodiments comprise a mode register controller to capture and store the data comprising mode register setting commands issued during a host control mode, such that an NVC can program the DRAM mode registers in an NVC control mode.Type: GrantFiled: October 14, 2015Date of Patent: July 24, 2018Assignee: Rambus Inc.Inventors: Aws Shallal, Michael Miller, Stephen Horn
-
Patent number: 9946470Abstract: Disclosed herein are techniques for implementing high-throughput low-latency hybrid memory modules with improved data backup and restore throughput, enhanced non-volatile memory controller (NVC) resource access, and enhanced mode register setting programmability. Embodiments comprise a command replicator to generate sequences of one or more DRAM read and/or write and/or other commands to be executed in response to certain local commands from a non-volatile memory controller (NVC) during data backup and data restore operations. Other embodiments comprise an access engine to enable an NVC in a host control mode to trigger entry into a special mode and issue commands to access a protected register space. Some embodiments comprise a mode register controller to capture and store the data comprising mode register setting commands issued during a host control mode, such that an NVC can program the DRAM mode registers in an NVC control mode.Type: GrantFiled: May 17, 2016Date of Patent: April 17, 2018Assignee: Rambus Inc.Inventors: Aws Shallal, Michael Miller, Stephen Horn
-
Publication number: 20170109058Abstract: Disclosed herein are techniques for implementing high-throughput low-latency hybrid memory modules with improved data backup and restore throughput, enhanced non-volatile memory controller (NVC) resource access, and enhanced mode register setting programmability. Embodiments comprise a command replicator to generate sequences of one or more DRAM read and/or write and/or other commands to be executed in response to certain local commands from a non-volatile memory controller (NVC) during data backup and data restore operations. Other embodiments comprise an access engine to enable an NVC in a host control mode to trigger entry into a special mode and issue commands to access a protected register space. Some embodiments comprise a mode register controller to capture and store the data comprising mode register setting commands issued during a host control mode, such that an NVC can program the DRAM mode registers in an NVC control mode.Type: ApplicationFiled: May 17, 2016Publication date: April 20, 2017Inventors: Aws SHALLAL, Michael MILLER, Stephen HORN
-
Patent number: 7855423Abstract: A mount for a semiconductor device has a first surface with at least one contact region and a second surface. The mount has a substrate to receive the second surface of the semiconductor device and a planar element. The planar element has an aperture sized to surround the semiconductor. A first surface of the planar element is mounted to the substrate and is located to surround the semiconductor device such that the semiconductor device is aligned by the aperture. The mount further has means for mounting the semiconductor device to the substrate in an aligned position. Some embodiments include a method of making and/or using such a mount.Type: GrantFiled: February 3, 2009Date of Patent: December 21, 2010Assignee: SolFocus, Inc.Inventors: Stephen Horne, Gary D. Conley
-
Patent number: 7545011Abstract: A mount for a semiconductor device has a first surface with at least one contact region and a second surface. The mount has a substrate to receive the second surface of the semiconductor device and a planar element. The planar element has an aperture sized to surround the semiconductor. A first surface of the planar element is mounted to the substrate and is located to surround the semiconductor device such that the semiconductor device is aligned by the aperture. The mount further has means for mounting the semiconductor device to the substrate in an aligned position. Some embodiments include a method of making and/or using such a mount.Type: GrantFiled: August 24, 2006Date of Patent: June 9, 2009Assignee: SolFocus, Inc.Inventors: Stephen Horne, Gary D. Conley
-
Publication number: 20090140406Abstract: A mount for a semiconductor device has a first surface with at least one contact region and a second surface. The mount has a substrate to receive the second surface of the semiconductor device and a planar element. The planar element has an aperture sized to surround the semiconductor. A first surface of the planar element is mounted to the substrate and is located to surround the semiconductor device such that the semiconductor device is aligned by the aperture. The mount further has means for mounting the semiconductor device to the substrate in an aligned position. Some embodiments include a method of making and/or using such a mount.Type: ApplicationFiled: February 3, 2009Publication date: June 4, 2009Applicant: SolFocus, Inc.Inventors: Stephen Horne, Gary D. Conley
-
Patent number: 7474996Abstract: A method of processing geophysical data including determining the azimuth of a mirror symmetry plane within the earth from the geophysical data having sets of geophysical data acquired with different source-receiver azimuths. The data are processed to determine attributes of the geophysical data that are azimuth-dependent. One azimuth-dependent attribute of the geophysical data is selected, and a value of the source-receiver azimuth about which the selected attribute exhibits mirror symmetry is determined. This locates a mirror symmetry plane within the earth. The value of the source-receiver azimuth may be determined by generating an objective function indicative of the difference between the actual value of an attribute at one azimuth and the value predicted for that attribute at that azimuth using a trial estimate of the azimuth of a mirror symmetry plane, and finding the azimuth of a mirror symmetry plane that minimizes the objective function.Type: GrantFiled: July 17, 2002Date of Patent: January 6, 2009Assignee: WesternGeco L.L.C.Inventors: Stephen Horne, Richard Bale
-
Patent number: D876587Type: GrantFiled: December 1, 2017Date of Patent: February 25, 2020Assignee: LEAFIELD MARINE LIMITEDInventors: Wayne Young, Stephen Horn, Steven Sobek