Patents by Inventor Stephen J.A. DeWitt

Stephen J.A. DeWitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220370984
    Abstract: Fiber compositions are provided that incorporate metal organic framework (MOF) materials into the polymeric matrix of the fiber. The metal organic framework materials can be incorporated by including MOF particles into a “dope” or synthesis solution used to form the fiber. The dope solution can then be used to form fibers that include 5.0 wt % or more of MOF in the resulting polymeric structural material of the fiber, relative to a weight of the fibers. In some aspects, the metal organic framework material can correspond to a MOF with selectivity for adsorption of CO2.
    Type: Application
    Filed: May 20, 2022
    Publication date: November 24, 2022
    Inventors: Simon C. Weston, William J. Koros, Wenying Quan, Ryan P. Lively, Fengyi Zhang, Carter W. Abney, Stephen J.A. DeWitt, Matthew J. Realff, Hannah E. Holmes, Manjeshwar G. Kamath
  • Publication number: 20220372314
    Abstract: Ink compositions are provided for using solvent-based additive manufacturing (SBAM) techniques to form contactor structures and/or structures for use in an adsorption or absorption contactor. Methods forming a contactor using SBAM are also provided. The ink compositions can include a substantial content of adsorbent particles to provide enhanced adsorption by a contactor. Metal organic framework (MOF) structures and zeotype framework structures are examples of types of adsorbent particles that can be incorporated into an ink composition for forming a contactor structure by SBAM. The ink can further include a polymeric component that can serve as the structural component of a polymeric structural material produced by the additive manufacturing method. Such a structural material can correspond to a polymeric material with incorporated adsorbent particles. In some aspects, the polymeric structural material and/or the adsorbent particles can have selectivity for adsorption of CO2 from a process fluid flow.
    Type: Application
    Filed: May 20, 2022
    Publication date: November 24, 2022
    Inventors: Simon C. Weston, Ryan P. Lively, Carter W. Abney, Fengyi Zhang, William J. Koros, Wenying Quan, Stephen J.A. DeWitt, Matthew J. Realff, Hannah E. Holmes, Yang Liu
  • Publication number: 20220370950
    Abstract: Contactor structures are provided that can allow for improved heat management while reducing or minimizing the potential for contamination of process gas streams with heat transfer fluids. The contactor structures can include one or more sets of flow channels for process gas flows, such as gas flows introduced to allow adsorption of components from a gas stream or gas flows introduced to facilitate desorption of previously adsorbed components into a purge gas stream. The process gas flow channels can correspond to flow channels defined by a structural material of unitary structure. The unitary structure can correspond to the entire contactor, or the unitary structure can correspond to a monolith that forms a portion of the contactor. The contactor structures can also include one or more sets of flow channels for heat transfer fluids. The heat transfer flow channels can also be defined by the structural material of a unitary structure.
    Type: Application
    Filed: May 20, 2022
    Publication date: November 24, 2022
    Inventors: Simon C. Weston, Ryan P. Lively, Matthew J. Realff, William J. Koros, Wenying Quan, Fengyi Zhang, Dong Hwi Jeong, Seongbin Ga, Stephen J.A. DeWitt, Yang Liu, Hannah E. Holmes
  • Publication number: 20220154058
    Abstract: Fibers, fabrics, mattresses and processes of making the fibers generally include a microencapsulated phase change material; and a polymer, wherein the microencapsulated phase change material is greater than 50 percent by weight of the fiber. The process for making the fibers is a dry jet/wet spinning process free of sonication.
    Type: Application
    Filed: November 1, 2021
    Publication date: May 19, 2022
    Inventors: Yun-Ho Ahn, Sheri McGuire, Ryan P. Lively, Stephen J.A. DeWitt