Patents by Inventor Stephen J. Brosnan

Stephen J. Brosnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7283702
    Abstract: Encircled far field energy is substantially increased by modifying the near field energy distribution of radiation from each fiber in an emitting array. Each beamlet output from a fiber is modified to have a generally uniform cross-sectional energy distribution, using a pair of aspheric optical elements selected for that purpose. The optical elements may be refractive or reflective. The modified beamlets combine to form a composite output beam with a generally uniform energy distribution. Preferably, the composite beam is subject to an array-wide inverse transformation to a near-Gaussian distribution, further enhancing the encircled far field energy and providing a more efficient high power laser source. Further gains in efficiency are achieved by selecting a fiber bundle pattern, lens array pattern and lens shape that together result in a high fill factor.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: October 16, 2007
    Assignee: Northrop Grumman Corporation
    Inventors: Stephen J. Brosnan, Michael G. Wickham, Hiroshi Komine
  • Patent number: 7155091
    Abstract: An array of cylindrical end-caps with separate or integral lenses is stacked with its members in close contact, forming inter-cylinder gaps between every subset of three adjacent cylindrical lenses. Conductive fibers are disposed in the inter-cylinder gaps. Heat that would otherwise accumulate in the array is removed through the conductive fibers and transmitted to an external heat sink.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: December 26, 2006
    Assignee: Northrop Grumman Corporation
    Inventors: James M. Zamel, Michael G. Wickham, Stephen J. Brosnan
  • Patent number: 7099356
    Abstract: A method is provided for seeding laser system (10) for single longitudinal mode oscillation. The method includes coupling laser system (10) to be seeded for single mode output to a seed laser radiation source (12). Next, the frequency capture range (44) and spacing (46) of the axial modes (42) of the cavity (24) of the laser system (10) are determined. A seed spectrum (36) is then generated from the seed laser radiation source (12) with a bandwidth (40) corresponding to the axial mode spacing (46). The seed spectrum (36) includes a comb of discrete frequency components (38) with one or more of the discrete frequency components (38) being within the frequency capture range (44) of at least one of the axial modes (42). The seed spectrum (36) is then injected into the cavity (24) such that at least one of the axial modes (42) oscillates with the seed radiation.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: August 29, 2006
    Assignee: Northrop Grumman Corporation
    Inventors: Hiroshi Komine, James G. Ho, Hagop Injeyan, Stephen J. Brosnan
  • Publication number: 20040233945
    Abstract: A method is provided for seeding laser system (10) for single longitudinal mode oscillation. The method includes coupling laser system (10) to be seeded for single mode output to a seed laser radiation source (12). Next, the frequency capture range (44) and spacing (46) of the axial modes (42) of the cavity (24) of the laser system (10) are determined. A seed spectrum (36) is then generated from the seed laser radiation source (12) with a bandwidth (40) corresponding to the axial mode spacing (46). The seed spectrum (36) includes a comb of discrete frequency components (38) with one or more of the discrete frequency components (38) being within the frequency capture range (44) of at least one of the axial modes (42). The seed spectrum (36) is then injected into the cavity (24) such that at least one of the axial modes (42) oscillates with the seed radiation.
    Type: Application
    Filed: May 19, 2003
    Publication date: November 25, 2004
    Applicant: Northrop Grumman Corporation
    Inventors: Hiroshi Komine, James G. Ho, Hagop Injeyan, Stephen J. Brosnan
  • Publication number: 20040081396
    Abstract: An optical collimator system for a high power fiber laser system that collimates the individual light beams amplified by a plurality of fibers in the laser system. The fibers are optically coupled to undoped fibers and the fibers are optically coupled to one surface of an optical substrate. A registration guide precisely aligns the fibers to the substrate. Lenses are optically coupled to an opposing surface of the substrate in precise alignment with the optical fibers. The light beam from each fiber propagates through the substrate and diverges, and the associated lens collimates the beam to have a desired beam width and direction. Each lens includes an anti-reflective coating so that the optical beam from the fiber is not significantly reflected back through the substrate.
    Type: Application
    Filed: October 23, 2002
    Publication date: April 29, 2004
    Inventors: Hiroshi Komine, Stephen J. Brosnan, Stephen P. Palese
  • Patent number: 6678294
    Abstract: A seed laser apparatus is disclosed. It comprises a distributed feedback laser system for transmitting a dithered optical signal having a frequency versus time characteristic that is represented by a triangular waveform and an optical medium including a plurality of optical signal paths, each path including an optical fiber and a fiber amplifier. The optical medium is characterized by stimulated Brillouin scattering (SBS) having a response time, whereby the period of the triangular waveform is equal to the round-trip transit time in the fiber or shorter than the response time of the SBS.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: January 13, 2004
    Assignee: Northrop Grumman Corporation
    Inventors: Hiroshi Komine, Stephen J. Brosnan, Michael G. Wickham
  • Patent number: 6666590
    Abstract: A system for coupling light emitted from a plurality of laser diodes to a single optical fiber provides increased pump light brightness to the optical fiber to provide increased power fiber amplifiers. The system takes advantage of the brightness mismatch in the fast and slow planes of a laser diode to allow capture of more than one diode's power into a single multimode pump fiber. A first cylindrical lens is disposed to collimate light from the fast planes of the diodes. A second cylindrical lens is disposed orthogonal to the optical axis and perpendicular to the first cylindrical lens and images light from the diodes in the slow plane. A collection lens is provided to image the light from the slow plane as well as collect light from the fast plane and directs light from multiple diodes into a single multimode optical fiber.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: December 23, 2003
    Assignee: Northrop Grumman Corporation
    Inventor: Stephen J. Brosnan
  • Publication number: 20030118291
    Abstract: A system for coupling light emitted from a plurality of laser diodes to a single optical fiber provides increased pump light brightness to the optical fiber to provide increased power fiber amplifiers. The system takes advantage of the brightness mismatch in the fast and slow planes of a laser diode to allow capture of more than one diode's power into a single multimode pump fiber. A first cylindrical lens is disposed to collimate light from the fast planes of the diodes. A second cylindrical lens is disposed orthogonal to the optical axis and perpendicular to the first cylindrical lens and images light from the diodes in the slow plane. A collection lens is provided to image the light from the slow plane as well as collect light from the fast plane and directs light from multiple diodes into a single multimode optical fiber.
    Type: Application
    Filed: December 14, 2000
    Publication date: June 26, 2003
    Inventor: Stephen J. Brosnan
  • Patent number: 6512867
    Abstract: A dual-clad fiber laser employs a multi-mode pump fiber array for introducing pump light into a dual-clad fiber array along the length of the array. Each fiber in the dual-clad fiber array includes a single mode core, a multi-mode inner cladding layer and an outer cladding layer. Each fiber in the multi-mode fiber array includes a multimode core and an outer cladding layer. The inner cladding layer and the core are the same material and the outer cladding layers are the same material. The dual-clad fiber array is a fiber ribbon wound on a bobbin. The multi-mode pump fiber array is a fiber ribbon that is wrapped around the outside of the dual-clad fiber ribbon on the bobbin. A doped silica frit is placed between the fiber ribbons, where the dopant makes the frit have an index of refraction greater than the index of refraction of the outer layers.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: January 28, 2003
    Assignee: TRW Inc.
    Inventor: Stephen J. Brosnan
  • Publication number: 20020064342
    Abstract: A dual-clad fiber laser employs a multi-mode pump fiber array for introducing pump light into a dual-clad fiber array along the length of the array. Each fiber in the dual-clad fiber array includes a single mode core, a multi-mode inner cladding layer and an outer cladding layer. Each fiber in the multi-mode fiber array includes a multimode core and an outer cladding layer. The inner cladding layer and the core are the same material and the outer cladding layers are the same material. The dual-clad fiber array is a fiber ribbon wound on a bobbin. The multi-mode pump fiber array is a fiber ribbon that is wrapped around the outside of the dual-clad fiber ribbon on the bobbin. A doped silica frit is placed between the fiber ribbons, where the dopant makes the frit have an index of refraction greater than the index of refraction of the outer layers.
    Type: Application
    Filed: November 29, 2000
    Publication date: May 30, 2002
    Inventor: Stephen J. Brosnan
  • Patent number: 6366356
    Abstract: A high average power fiber-laser system comprises a master oscillator for generating a primary laser signal; a beam splitter array for splitting the primary laser signal into N secondary laser signals; an optical frequency shifter for shifting the frequency of the primary laser signal; a phase modulator array for providing phase compensation of the N secondary laser signals; N single-mode dual clad fiber amplifiers for amplifying the N secondary laser signals and generating an output beam; a beam sampler for sampling the wavefront of the output beam, defining an array of sampled signals; means responsive to the array of sampled signals for interferometrically combining the array of said sampled signals and the shifted primary laser signal into an array of heterodyne optical signals, each having a phase that corresponds to the state of phase of the array of sampled signals; and means responsive to the array of heterodyne optical signals for providing a plurality of feedback signals to the phase modulator array
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: April 2, 2002
    Assignee: TRW Inc.
    Inventors: Stephen J. Brosnan, Donald G. Heflinger, Lee O. Heflinger
  • Patent number: 6301421
    Abstract: A photonic crystal fiber (10, 110) is provided for a laser/amplifier system including a guiding structure comprising a geometric array of axial passages (20, 120) formed along the length of the fiber (10, 110). More particularly, the guiding structure includes a central silica rod (14, 114) which is doped with a rare earth element for providing optical gain to the laser/amplifier. A plurality of second silica rods (16, 116) are disposed circumferentially about the central rod (14, 114). Each of the second rods (16, 116) includes an axial passage (20, 120) formed therethrough along the length of the fiber (10, 110). A reflective coating (22, 122) is deposited on an outboard surface of the array of rods (12, 112) to confine pumped light (30, 130) therein.
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: October 9, 2001
    Assignee: TRW Inc.
    Inventors: Michael G. Wickham, Gerald W. Holleman, Stephen J. Brosnan
  • Patent number: 6229616
    Abstract: An optical heterodyne wavefront sensor uses a radio frequency (RF) signal for measuring an optical wavefront having a state of phase that differs throughout its aperture. It comprises a lens, optical fiber and optical frequency shifter arrangement to develop a reference optical wavefront having substantially the same phase throughout and that is shifted in frequency by an amount corresponding to the RF. A beam combiner interferometrically combines the optical wavefront and the shifted reference optical wavefront into a heterodyne optical signal at the RF frequency, each subaperture of which has a phase that corresponds to the state of phase of a like subaperture of the optical wavefront.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: May 8, 2001
    Assignee: TRW Inc.
    Inventors: Stephen J. Brosnan, Donald G. Heflinger, Lee O. Heflinger
  • Patent number: 5610705
    Abstract: A heterodyne velocimeter system includes an illumination laser that illuminates a moving object with a coherent, laser beam. The laser illumination is reflected from the object as separate wavefronts (referred to as the signal light) and is passed through a range-focus lens pair, a polarizer element and through a partially reflective, partially transmissive element onto a plurality of separate light sensitive elements of a sensor which are referred to as pixels. A second source of laser illumination, such as a second laser provides a reference light beam that is directed onto a local oscillator scatter mask. The light beam from the second laser is scattered into separate wavefronts by the scatter mask and they are focussed by a lens onto the partially reflective partially transmissive element which reflects them onto the separate pixels of the sensor where they are individually mixed with the separate signal light wavefronts from the object.
    Type: Grant
    Filed: February 16, 1995
    Date of Patent: March 11, 1997
    Assignee: Northrop Grumman Corporation
    Inventors: Stephen J. Brosnan, Hiroshi Komine
  • Patent number: 4689794
    Abstract: A method for injection locking a xenon chloride laser at 308.4 nm. Neon (Ne) is used as a diluent in the laser to shift slightly the gain profile of the laser towards the longer wavelengths and towards 308.4 nm. The laser is operated at a lower level of gain than is used in the prior art by using a lower level of electrical discharge than was used in the prior art. The lowered gain reduces the numerical magnitude of the difference in the gain of the laser at 308.4 nm and its gain at the highest gain modes of operation. Either a low level signal at 308.4 nm is injected into the laser to mode lock the lowered gain laser at 308.4 nm. or a frequency selection device such as etalons is inserted within the laser cavity to restrict operation to 308.4 nm. The period of the electrical discharge also is lengthened from that typically used in the prior art so as to obtain saturation of the output at 308.4 nm.
    Type: Grant
    Filed: January 28, 1985
    Date of Patent: August 25, 1987
    Assignee: Northrop Corporation
    Inventor: Stephen J. Brosnan
  • Patent number: 4490823
    Abstract: A laser system for producing a laser beam in an unstable resonator whose spatial and temporal characteristics conform with those of a laser beam from a stable resonator. The laser system includes three reflectors, an optical switch and a laser gain medium positioned within an optical propagation path extending between the optical switch and the third reflector. The optical switch selectably exposes either the first or the second reflector to the aforesaid propagation path, the first and second reflectors being designed to form, in combination with the third reflector, a stable and an unstable resonator, respectively. In operation, the optical switch initially is set so as to include the first reflector in the laser resonator, thereby forming a stable resonator which produces a beam of laser light. A short time thereafter, the optical switch changes states so as to substitute the second reflector for the first, thereby forming an unstable resonator.
    Type: Grant
    Filed: March 7, 1983
    Date of Patent: December 25, 1984
    Assignee: Northrop Corporation
    Inventors: Hiroshi Komine, Stephen J. Brosnan
  • Patent number: 4360925
    Abstract: In a high power laser, such as one employing a relatively high gain lasing medium such as CO.sub.2 or Nd:YAG, the optical resonator for the laser comprises a positive branch unstable resonator. The output beam is coupled from the unstable resonator by means of a partially transmissive mirror of the resonator, whereby a filled-in beam is obtained while facilitating optical alignment of the output coupling means. In a preferred embodiment, the optical resonator comprises a pair of mirrors collinearly arranged on the optical axis of the resonator to supply an output beam which is collinear with the optical axis of the resonator. The filled-in output beam is of generally uniform power density across the transverse cross sectional dimensions thereof, whereby a near diffraction limited output beam is obtained with more uniform power density.
    Type: Grant
    Filed: February 25, 1980
    Date of Patent: November 23, 1982
    Assignee: Quanta Ray, Inc.
    Inventors: Stephen J. Brosnan, Richard L. Herbst