Patents by Inventor Stephen J. Fonash

Stephen J. Fonash has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210305447
    Abstract: A photovoltaic or light detecting device is provided that includes a periodic array of dome or dome-like protrusions at the light impingement surface and three forms of reflector/back electrode at the device back. The beneficial interaction between an appropriately designed top protrusion array and these reflector/electrode back contacts (R/EBCs) serve (1) to refract the incoming light thereby providing photons with an advantageous larger momentum component parallel to the plane of the back (R/EBC) contact and (2) to provide optical impedance matching for the short wavelength incoming light. The reflector/back electrode operates as a back light reflector and counter electrode to the periodic array of dome or dome-like structures. A substrate supports the reflector/back electrode.
    Type: Application
    Filed: February 23, 2021
    Publication date: September 30, 2021
    Inventor: Stephen J. Fonash
  • Patent number: 10991839
    Abstract: A photovoltaic or light detecting device is provided that includes a periodic array of dome or dome-like protrusions at the light impingement surface and a metal-less reflector/back electrode at the device back. The beneficial interaction between an appropriately designed top protrusion array and metal-less reflector/electrode back contact (R/EBC) serves (1) to refract the incoming light thereby providing photons with an advantageous larger momentum component parallel to the plane of the back (R/EBC) contact and (2) to provide optical impedance matching for the short wavelength incoming light. The metal-less reflector/back electrode operates as a back light reflector and counter electrode to the periodic array of dome or dome-like structures. A substrate supports the metal-less reflector/back electrode.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: April 27, 2021
    Inventor: Stephen J. Fonash
  • Patent number: 10953370
    Abstract: Micro- or nano-pores are produced in a membrane for various applications including filtration and sorting functions. Pores with at least one cross-sectional dimension in or near the nano-scale are provided. Device designs and processing allow for the use of thin film disposition and nano-imprinting or nano-molding to produce arrays of nano-pores in membrane materials functioning in applications such as filtration membranes, drug application/control structures, body fluid sampling structures, and sorting membranes. The nano-imprinting or nano-molding approach is utilized to create nano-elements in an organic or inorganic mold material with at least one nano-element cross-sectional dimension in or close to the nano-scale. These nano-elements can be in various shapes including slits, cones, columns, domes, and hemispheres.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: March 23, 2021
    Assignee: The Penn State Research Foundation
    Inventors: Stephen J. Fonash, Wook Jun Nam
  • Patent number: 10930803
    Abstract: A photovoltaic or light detecting device is provided that includes a periodic array of dome or dome-like protrusions at the light impingement surface and three forms of reflector/back electrode at the device back. The beneficial interaction between an appropriately designed top protrusion array and these reflector/electrode back contacts (R/EBCs) serve (1) to refract the incoming light thereby providing photons with an advantageous larger momentum component parallel to the plane of the back (R/EBC) contact and (2) to provide optical impedance matching for the short wavelength incoming light. The reflector/back electrode operates as a back light reflector and counter electrode to the periodic array of dome or dome-like structures. A substrate supports the reflector/back electrode.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: February 23, 2021
    Inventor: Stephen J. Fonash
  • Patent number: 10390724
    Abstract: A three dimensional biomedical probe device is provided that includes a planar substrate. A probe structure is supported on the planar substrate. The probe structure has a base and a portion essentially perpendicular to the base extending along a length to a tip and has a linear dimension at the tip of said probe structure of between 5 nanometers (nm) and 5 microns thereby defining an AC, DC, or transient current, charge, or voltage sensing probe. In one variation, this probe is the electrical contact to the biomedical medium. In another variation, this probe is also the gate electrode of a field effect transistor (FET). An array of selectively electrically addressable such devices is also provided giving the ability to sample the physiological activity at many positions within cells, fluids and intercellular regions without the need for mechanical motion and inducing cellular lysis.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: August 27, 2019
    Assignee: The Penn State Research Foundation
    Inventors: Stephen J. Fonash, Wook Jun Nam
  • Publication number: 20180021736
    Abstract: Micro- or nano-pores are produced in a membrane for various applications including filtration and sorting functions. Pores with at least one cross-sectional dimension in or near the nano-scale are provided. Device designs and processing allow for the use of thin film disposition and nano-imprinting or nano-molding to produce arrays of nano-pores in membrane materials function ing in applications such as filtration membranes, drug application/control structures, body fluid sampling structures, and sorting membranes. The nano-imprinting or nano-molding approach is utilized to create nano-elements in an organic or inorganic mold material with at least one nano-element cross-sectional dimension in or close to the nano-scale. These nano-elements can be in various shapes including slits, cones, columns, domes, and hemispheres.
    Type: Application
    Filed: February 5, 2015
    Publication date: January 25, 2018
    Applicant: The Penn State Research Foundation
    Inventors: Stephen J. Fonash, Wook Jun Nam
  • Patent number: 9634163
    Abstract: A nanostructured or microstructured array of elements on a conductor layer together form a device electrode of a photovoltaic or detector structure. The array on the conductor layer has a high surface area to volume ratio configuration defining a void matrix between elements. An active layer or active layer precursors is disposed into the void matrix as a liquid to form a thickness coverage giving an interface on which a counter-electrode is positioned parallel to the conduction layer or as a vapor to form a conformal thickness coverage of the array and conduction layer. The thickness coverage is controlled to enhance collection of at least one of electrons and holes arising from photogeneration, or excitons arising from photogeneration, to the device electrode or a device counter-electrode as well as light absorption in said active layer via reflection and light trapping of said device electrode.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: April 25, 2017
    Assignee: LCCM Solar, LLC
    Inventors: Stephen J. Fonash, Handong Li, David Stone
  • Publication number: 20170110604
    Abstract: A photovoltaic or light detecting device is provided that includes a periodic array of dome or dome-like protrusions at the light impingement surface and three forms of reflector/back electrode at the device back. The beneficial interaction between an appropriately designed top protrusion array and these reflector/electrode back contacts (R/EBCs) serve (1) to refract the incoming light thereby providing photons with an advantageous larger momentum component parallel to the plane of the back (R/EBC) contact and (2) to provide optical impedance matching for the short wavelength incoming light. The reflector/back electrode operates as a back light reflector and counter electrode to the periodic array of dome or dome-like structures. A substrate supports the reflector/back electrode.
    Type: Application
    Filed: October 28, 2016
    Publication date: April 20, 2017
    Inventor: Stephen J. Fonash
  • Publication number: 20170033244
    Abstract: A photovoltaic or light detecting device is provided that includes a periodic array of dome or dome-like protrusions at the light impingement surface and a metal-less reflector/back electrode at the device back. The beneficial interaction between an appropriately designed top protrusion array and metal-less reflector/electrode back contact (R/EBC) serves (1) to refract the incoming light thereby providing photons with an advantageous larger momentum component parallel to the plane of the back (R/EBC) contact and (2) to provide optical impedance matching for the short wavelength incoming light. The metal-less reflector/back electrode operates as a back light reflector and counter electrode to the periodic array of dome or dome-like structures. A substrate supports the metal-less reflector/back electrode.
    Type: Application
    Filed: July 29, 2016
    Publication date: February 2, 2017
    Inventor: Stephen J. Fonash
  • Publication number: 20160374585
    Abstract: A three dimensional biomedical probe device is provided that includes a planar substrate. A probe structure is supported on the planar substrate. The probe structure has a base and a portion essentially perpendicular to the base extending along a length to a tip and has a linear dimension at the tip of said probe structure of between 5 nanometers (nm) and 5 microns thereby defining an AC, DC, or transient current, charge, or voltage sensing probe. In one variation, this probe is the electrical contact to the biomedical medium. In another variation this probe is the gate electrode of a field effect transistor (FET). An array of selectively electrically addressable such devices is also provided giving the ability to sample the physiological activity at many positions within cells, fluids and intercellular regions without the need for mechanical motion and inducing cellular lysis.
    Type: Application
    Filed: June 26, 2014
    Publication date: December 29, 2016
    Inventors: Stephen J. Fonash, Wook Jun Nam
  • Patent number: 9209246
    Abstract: A gated microelectronic device is provided that has a source with a source ohmic contact with the source characterized by a source dopant type and concentration. A drain with a drain ohmic contact with the drain characterized by a drain dopant type and concentration. An intermediate channel portion characterized by a channel portion dopant type and concentration. An insulative dielectric is in contact with the channel portion and overlaid in turn by a gate. A gate contact applies a gate voltage bias to control charge carrier accumulation and depletion in the underlying channel portion. This channel portion has a dimension normal to the gate which is fully depleted in the off-state. The dopant type is the same across the source, drain and the channel portion of the device. The device on-state current is determined by the doping and, unlike a MOSFET, is not directly proportional to device capacitance.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: December 8, 2015
    Assignee: The Penn State University
    Inventors: Stephen J. Fonash, Yinghui Shan, Somasundaram Ashok
  • Publication number: 20140299184
    Abstract: A photo-active device is provided that has a cavity in an integrated, transparent mold material. An active material layer is disposed therein along with other layers disposed in and about said cavity to define a dome-like array architecture. A process for forming the dome-like array structure includes disposing an active layer into a series of empty periodically positioned cavities of a dome-like array template working mold material. Each of the series of empty periodically positioned cavities has curvature variations of the interior surface of the dome-array cavities optimized for device efficiency, reduction of performance sensitivity to light impingement angle, or a combination thereof. At least one of absorber layers, contact layers, spacer/transport layers, and electrode layers are also disposed in the series of cavities.
    Type: Application
    Filed: March 31, 2014
    Publication date: October 9, 2014
    Applicant: SOLARITY, INC.
    Inventors: Stephen J. Fonash, Charles Smith
  • Publication number: 20140242744
    Abstract: A process for forming a nano-element structure is provided that includes contacting a template with a material to form the nano-element structure having an array of nano-elements and a base physically connecting the array of nano-elements. The material that is contacted with the template is the nano-element structure material or precursor material from which the array of nano-elements is formed. The nano-element structure is then removed from contact with the template. The nano-element structure material or its precursor is brought into contact with the template for the forming of the array of nano-elements by techniques such as nano-imprinting and printing. A final substrate subsequently supports the array of nano-elements so produced. The array of nano-elements is exposed free and at least one layer of a dopant layer, a spacer layer, a light absorber layer, a conductor, or a counter electrode layer, are employed to complete an operative device.
    Type: Application
    Filed: May 7, 2012
    Publication date: August 28, 2014
    Applicant: SOLARITY, INC.
    Inventors: Stephen J. Fonash, Wook Jun Nam
  • Publication number: 20130285149
    Abstract: A gated microelectronic device is provided that has a source with a source ohmic contact with the source characterized by a source dopant type and concentration. A drain with a drain ohmic contact with the drain characterized by a drain dopant type and concentration. An intermediate channel portion characterized by a channel portion dopant type and concentration. An insulative dielectric is in contact with the channel portion and overlaid in turn by a gate. A gate contact applies a gate voltage bias to control charge carrier accumulation and depletion in the underlying channel portion. This channel portion has a dimension normal to the gate which is fully depleted in the off-state. The dopant type is the same across the source, drain and the channel portion of the device. The device on-state current is determined by the doping and, unlike a MOSFET, is not directly proportional to device capacitance.
    Type: Application
    Filed: July 3, 2013
    Publication date: October 31, 2013
    Inventors: Stephen J. Fonash, Yinghui Shan, Somasundaram Ashok
  • Patent number: 8569834
    Abstract: A gated microelectronic device is provided that has a source with a source ohmic contact with the source characterized by a source dopant type and concentration. A drain with a drain ohmic contact with the drain characterized by a drain dopant type and concentration. An intermediate channel portion characterized by a channel portion dopant type and concentration. An insulative dielectric is in contact with the channel portion and overlaid in turn by a gate. A gate contact applies a gate voltage bias to control charge carrier accumulation and depletion in the underlying channel portion. This channel portion has a dimension normal to the gate which is fully depleted in the off-state. The dopant type is the same across the source, drain and the channel portion of the device. The device on-state current is determined by the doping and, unlike a MOSFET, is not directly proportional to device capacitance.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: October 29, 2013
    Assignee: The Penn State Research Foundation
    Inventors: Stephen J. Fonash, Yinghui Shan, Somasundaram Ashok
  • Publication number: 20130192663
    Abstract: A material design is provided for a light and carrier collection (LCCM) architecture in single junction and multi-junction photovoltaic and light sensor devices. The LCCM architecture improves performance and, when applied to single or multi-junctions, can lead to solar cells on flexible plastic substrates which can be easily deployed and even draped over various shapes and forms. The device has an array of conducting nano-elements in electrical and physical contact with the planar electrode. A spacer of 0 to 100 nm in thickness may be used to contact the array of conducting nano-elements. One or more volume regions comprised of at least one light absorbing material is present with the first in simultaneous contact with said spacer to form an operating photovoltaic single- or multi-junction device with periodic undulations to enhance trapping of the impinging light and photocarrier collection throughout the absorber volume regions.
    Type: Application
    Filed: September 15, 2011
    Publication date: August 1, 2013
    Inventors: Stephen J. Fonash, Wook Jun Nam
  • Publication number: 20130099342
    Abstract: A nanostructured or microstructured array of elements on a conductor layer together form a device electrode of a photovoltaic or detector structure. The array on the conductor layer has a high surface area to volume ratio configuration defining a void matrix between elements. An active layer or active layer precursors is disposed into the void matrix as a liquid to form a thickness coverage giving an interface on which a counter-electrode is positioned parallel to the conduction layer or as a vapor to form a conformal thickness coverage of the array and conduction layer. The thickness coverage is controlled to enhance collection of at least one of electrons and holes arising from photogeneration, or excitons arising from photogeneration, to the device electrode or a device counter-electrode as well as light absorption in said active layer via reflection and light trapping of said device electrode.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 25, 2013
    Inventors: Stephen J. Fonash, Li Handong, David Stone
  • Publication number: 20130092210
    Abstract: A photovoltaic device is provided that includes a periodic array having a unit cell with a first electrode protrusion of a height H, characteristic width W, and period L. An absorber of nominal thickness T has a volume with a first component between the electrode element protrusions and a second component completely covering the electrode protrusions, H, W, and L for a given T allow carrier collection from the majority of points within the volume and simultaneously to enhance the photon density distribution within the absorber resulting from path length, photonic and plasmonic effects produced by the topology and morphology created by the electrode shapes and the volume distribution between the first and the second components.
    Type: Application
    Filed: June 23, 2011
    Publication date: April 18, 2013
    Applicant: SOLARITY, INC.
    Inventors: Stephen J. Fonash, Wook Jun Nam
  • Patent number: 8294025
    Abstract: Lateral collection photovoltaic (LCP) structures based on micro- and nano-collecting elements are used to collect photogenerated carriers. In one set of embodiments, the collecting elements are arrayed on a conducting substrate. In certain versions, the collecting elements are substantially perpendicular to the conductor. In another set of embodiments, the micro- or nano-scale collecting elements do not have direct physical and electrical contact to any conducting substrate. In one version, both anode and cathode electrodes are laterally arrayed. In another version, the collecting elements of one electrode are a composite wherein a conductor is separated by an insulator, which is part of each collector element, from the opposing electrode residing on the substrate. In still another version, the collection of one electrode structure is a composite containing both the anode and the cathode collecting elements for collection. An active material is positioned among the collector elements.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: October 23, 2012
    Assignee: Solarity, LLC
    Inventors: Stephen J. Fonash, Handong Li, David Stone
  • Publication number: 20110023955
    Abstract: Lateral collection photovoltaic (LCP) structures based on micro- and nano-collecting elements are used to collect photogenerated carriers. In one set of embodiments, the collecting elements are arrayed on a conducting substrate. In certain versions, the collecting elements are substantially perpendicular to the conductor. In another set of embodiments, the micro- or nano-scale collecting elements do not have direct physical and electrical contact to any conducting substrate. In one version, both anode and cathode electrodes are laterally arrayed. In another version, the collecting elements of one electrode are a composite wherein a conductor is separated by an insulator, which is part of each collector element, from the opposing electrode residing on the substrate. In still another version, the collection of one electrode structure is a composite containing both the anode and the cathode collecting elements for collection. An active material is positioned among the collector elements.
    Type: Application
    Filed: June 26, 2008
    Publication date: February 3, 2011
    Inventors: Stephen J. Fonash, Wook Jun Nam