Patents by Inventor Stephen J. Hahn

Stephen J. Hahn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210113135
    Abstract: Methods and/or device facilitating and selecting among multiple modes of filtering a cardiac electrical signal, in which one filtering mode includes additional high pass filtering of low frequency signals, relative to the other filtering mode. The selection filtering modes may include comparing sensed signal amplitude to one or more thresholds, using the multiple modes of filtering. In another example, an additional high pass filter is enabled, over and above a default or baseline filtering mode, and the detected cardiac signal is monitored for indications of possible undersensing, and/or for drops in amplitude toward a threshold, and the additional high pass filter may be disabled upon finding of possible undersensing or drop in signal amplitude.
    Type: Application
    Filed: December 9, 2020
    Publication date: April 22, 2021
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: VENUGOPAL ALLAVATAM, STEPHEN J. HAHN, KEITH L. HERRMANN, MITCHELL D. LANZ, KRZYSZTOF Z. SIEJKO, BENJAMIN SPEAKMAN
  • Patent number: 10905872
    Abstract: An IMD may include a housing with a controller and a power supply disposed within the housing. A distal electrode may be supported by a distal electrode support that biases the distal electrode toward an extended position in which the distal electrode extends distally from the distal end of the housing and allows the distal electrode to move proximally relative to the extended position in response to an axial force applied to the distal electrode in the proximal direction. In some cases, the distal electrode support may include a tissue ingrowth inhibiting outer sleeve that extends along the length of the distal electrode support and is configured to shorten when the distal electrode moves proximally relative to the extended position and to lengthen when the distal electrode moves back distally toward the extended position in order to accommodate movement of the distal electrode.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: February 2, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Peter Toy, Keith R. Maile, Bryan J. Swackhamer, G. Shantanu Reddy, Stephen J. Hahn
  • Patent number: 10888238
    Abstract: Methods and/or device facilitating and selecting among multiple modes of filtering a cardiac electrical signal, in which one filtering mode includes additional high pass filtering of low frequency signals, relative to the other filtering mode. The selection filtering modes may include comparing sensed signal amplitude to one or more thresholds, using the multiple modes of filtering. In another example, an additional high pass filter is enabled, over and above a default or baseline filtering mode, and the detected cardiac signal is monitored for indications of possible undersensing, and/or for drops in amplitude toward a threshold, and the additional high pass filter may be disabled upon finding of possible undersensing or drop in signal amplitude.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: January 12, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Venugopal Allavatam, Stephen J. Hahn, Keith L. Herrmann, Mitchell D. Lanz, Krzysztof Z. Siejko, Benjamin Speakman
  • Patent number: 10870008
    Abstract: Methods, systems and devices for providing cardiac resynchronization therapy (CRT) to a patient using a leadless cardiac pacemaker and an extracardiac device. The extracardiac device is configured to analyze one or more QRS complexes of the patient's heart, determine whether fusion pacing is taking place, and, if not, to communicate with the leadless cardiac pacemaker to adjust intervals used in the CRT in order to generate desirable fusion of the pace and intrinsic signals. The extracardiac device may take the form of a subcutaneous implantable monitor, a subcutaneous implantable defibrillator, or other devices including wearable devices.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: December 22, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Stephen J. Hahn, Kenneth M. Stein, Yinghong Yu, Scott J. Healy, John Morgan
  • Patent number: 10870007
    Abstract: This document discusses, among other things, systems and methods to acclimate a patient to therapy from an implantable medical device. For instance, an implantable medical device can include pulse generation circuitry, sensing circuitry, and a controller. The pulse generation circuitry can generate electrical pulses. The sensing circuitry can be for sensing cardiac electrical activity of the patient. In an example, the controller can detect cardiac events that define pacing timing intervals and control the delivery of electrical pulses in accordance with a programmed mode. The controller can be programmed to provide instructions to the pulse generation circuitry to deliver electrical pulses to the heart of a patient. In an example, the electrical pulses can be based on a therapy parameter. The controller can be configured to adjust the therapy parameter according to an acclimation profile to acclimate the patient to a stimulation therapy.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: December 22, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Keith L. Herrmann, Stephen J. Hahn
  • Publication number: 20200360699
    Abstract: Methods, systems and devices for providing cardiac resynchronization therapy (CRT) to a patient using a leadless cardiac pacemaker (LCP) and an extracardiac device (ED). The LCP is configured to deliver pacing therapy at a pacing interval. Illustratively, the ED may be configured to analyze the cardiac cycle including a portion preceding the pacing therapy delivery for one or several cardiac cycles, and determine whether an interval from the P-wave to the pace therapy in the cardiac cycle(s) is in a desired range. In an example, if the P-wave to pace interval is outside the desired range, the ED communicates to the LCP to adjust the pacing interval.
    Type: Application
    Filed: August 5, 2020
    Publication date: November 19, 2020
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: STEPHEN J. HAHN, KRZYSZTOF Z. SIEJKO, AMY JEAN BRISBEN, KEITH R. MAILE
  • Patent number: 10792505
    Abstract: Methods and devices for cardiac therapy. One example provides a subcutaneous anti-tachycardia pacing therapy. Another example provides a subcutaneous low energy cardioversion therapy. Yet another example provides a subcutaneous multiple pulse cardioversion therapy. In various examples, specific steps are taken to ensure synchronization of delivered therapy when provided in response to sensing and analysis of a subcutaneous signal. Some examples use a substernal device instead.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: October 6, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Stephen J. Hahn, Paul Freer, Venugopal Allavatam
  • Patent number: 10780278
    Abstract: Methods, systems and devices for providing cardiac resynchronization therapy (CRT) to a patient using a leadless cardiac pacemaker (LCP) and an extracardiac device (ED). The LCP is configured to deliver pacing therapy at a pacing interval. Illustratively, the ED may be configured to analyze the cardiac cycle including a portion preceding the pacing therapy delivery for one or several cardiac cycles, and determine whether an interval from the P-wave to the pace therapy in the cardiac cycle(s) is in a desired range. In an example, if the P-wave to pace interval is outside the desired range, the ED communicates to the LCP to adjust the pacing interval.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: September 22, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Stephen J. Hahn, Krzysztof Z. Siejko, Amy Jean Brisben, Keith R. Maile, Jr.
  • Publication number: 20200121293
    Abstract: A medical system includes a physiological monitoring system configured to sense a physiological signal and record physiological signal data indicative of the patient's physiological state. The physiological monitoring system including a controller, a storage device, at least one sensor operatively coupled to the controller, and a first communication component. The system includes a mobile device configured to facilitate sensor placement, the mobile device comprising a controller, a display device, and a second communication component configured to facilitate communication between the physiological monitoring system and the mobile device. The controller of the mobile device is configured to provide a graphical user interface (GUI) on the display device, the GUI including information about a proper placement of the at least one sensor, wherein the proper placement is determined based on the physiological signal data.
    Type: Application
    Filed: October 16, 2019
    Publication date: April 23, 2020
    Inventors: Gezheng Wen, Bin Mi, Stephen J. Hahn, Keith R. Maile
  • Publication number: 20200094063
    Abstract: Systems, methods and implantable devices configured to provide cardiac resynchronization therapy and/or bradycardia pacing therapy. A first device located in the heart of the patient is configured to receive a communication from a second device and deliver a pacing therapy in response to or in accordance with the received communication. A second device located elsewhere is configured to determine an atrial event has occurred and communicate to the first device to trigger the pacing therapy. The second device may be configured for sensing the atrial event by the use of vector selection and atrial event windowing, among other enhancements. Exception cases are discussed and handled as well.
    Type: Application
    Filed: November 12, 2019
    Publication date: March 26, 2020
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: STEPHEN J. HAHN, KRZYSZTOF Z. SIEJKO, WILLIAM J. LINDER, KEITH R. MAILE, AMY JEAN BRISBEN, KEITH L. HERRMANN, BRENDAN E. KOOP, BENJAMIN J. HAASL
  • Publication number: 20200094053
    Abstract: An example of a system and method for protecting a patient diagnosed of cancer from cardiac injury resulting from a chemotherapy treating the cancer. A sequence of cardioprotective pacing sessions may be initiated based on timing of the chemotherapy. Cardiac pacing pulses may be delivered to the patient during each session of the cardioprotective pacing sessions according to a cardioprotective pacing mode for controlling delivery of the cardiac pacing pulses to effect cardioprotection against potential myocardial injury resulting from the chemotherapy. The cardioprotective pacing mode may specifying alternating non-pacing and pacing periods.
    Type: Application
    Filed: September 19, 2019
    Publication date: March 26, 2020
    Inventor: Stephen J. Hahn
  • Patent number: 10512784
    Abstract: Systems, methods and implantable devices configured to provide cardiac resynchronization therapy and/or bradycardia pacing therapy. A first device located in the heart of the patient is configured to receive a communication from a second device and deliver a pacing therapy in response to or in accordance with the received communication. A second device located elsewhere is configured to determine an atrial event has occurred and communicate to the first device to trigger the pacing therapy. The second device may be configured for sensing the atrial event by the use of vector selection and atrial event windowing, among other enhancements. Exception cases are discussed and handled as well.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: December 24, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Stephen J. Hahn, Krzysztof Z. Siejko, William J. Linder, Keith R. Maile, Amy Jean Brisben, Keith L. Herrmann, Brendan E. Koop, Benjamin J. Haasl
  • Patent number: 10463305
    Abstract: Methods, systems and devices for providing cardiac resynchronization therapy (CRT) to a patient using a leadless cardiac pacemaker (LCP) and an extracardiac device (ED). The system is configured to identify atrial events to use as timing markers for the LCP to deliver CRT, and further to determine whether the timing markers are incorrectly sensed and to make adjustment or call for re-initialization as needed.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: November 5, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Qi An, Pramodsingh Hirasingh Thakur, Stephen J. Hahn, Yinghong Yu, Krzysztof Z. Siejko, Viktoria A. Averina, Brendan Early Koop, Keith R. Maile, Bin Mi
  • Publication number: 20190329060
    Abstract: A subcutaneous implantable cardioverter-defibrillator (S-ICD) comprising shocking electrodes configured to reduce the defibrillation threshold. The S-ICD may include a canister housing a source of electrical energy, a capacitor, and operational circuitry that senses heart rhythms and an electrode and lead assembly. The electrode and lead assembly may comprise a lead, at least one sensing electrode, and at least one shocking electrode. The at least one shocking electrode may extend over a length in the range of 50 to 110 millimeters and a width in the range of 1 to 40 millimeters.
    Type: Application
    Filed: July 11, 2019
    Publication date: October 31, 2019
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: ANDREW L. DE KOCK, G. SHANTANU REDDY, ROBERT D. BROCK, II, STEPHEN J. HAHN, BRENDAN E. KOOP, MOIRA B. SWEENEY, WYATT K. STAHL
  • Publication number: 20190321625
    Abstract: A device for the active fixation of an implantable medical lead includes a housing, a tine assembly, an electrode, and a rotatable shaft. The housing includes a proximal end for connecting to the lead and a distal end opposite the proximal end. The housing defines a housing lumen extending between the proximal end and a recess adjacent to the distal end. The tine assembly is disposed within the housing lumen and includes at least one tine configured to self-bias from a linear configuration within the housing to a curved configuration outside of the housing. The electrode assembly is disposed at the distal end of the housing and includes a plurality of electrodes. The rotatable shaft extends through the housing lumen and is configured to engage the tine assembly such that rotation of the shaft transitions the at least one tine between the linear configuration and the curved configuration.
    Type: Application
    Filed: April 19, 2019
    Publication date: October 24, 2019
    Inventors: Allan C. Shuros, Arthur J. Foster, Keith L. Herrmann, Deepa Mahajan, Stephen J. Hahn
  • Publication number: 20190299004
    Abstract: This document discusses, among other things, systems and methods to generate a first pacing waveform during a first pacing period and a second pacing waveform during a second pacing period, to alternate first and second pacing periods to provide pacing-based hypertension therapy to a heart of a patient to reduce patient blood pressure, and to determine an increased pacing rate for the first pacing waveform during the first pacing period using the first AV delay, wherein the first pacing waveform has a first atrioventricular (AV) delay and the second pacing waveform has a second AV delay longer than the first AV delay.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 3, 2019
    Inventors: Stephen J. Hahn, Pramodsingh Hirasingh Thakur, Qi An, Viktoria A. Averina, Krzysztof Z. Siejko, Ramesh Wariar
  • Publication number: 20190299003
    Abstract: This document discusses, among other things, systems and methods to generate a first pacing waveform during a first pacing period and a second pacing waveform during a second pacing period, to alternate first and second pacing periods to provide pacing-based hypertension therapy to a heart of a patient to reduce patient blood pressure, to receive information indicative of patient metabolic demand, and to determine an adjusted pacing-based hypertension therapy parameter using the received information indicative of patient metabolic demand, wherein the first pacing waveform has a first atrioventricular (AV) delay and the second pacing waveform has a second AV delay longer than the first AV delay.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 3, 2019
    Inventors: Stephen J. Hahn, Pramodsingh Hirasingh Thakur, Qj An, Viktoria A. Averina, Krzysztof Z. Siejko, Ramesb Wariar
  • Publication number: 20190299009
    Abstract: This document discusses, among other things, systems and methods to generate a first pacing waveform during a first pacing period and a second pacing waveform during a second pacing period, and alternate the first and second pacing periods to provide pacing-based hypertension therapy to a heart of a patient to reduce patient blood pressure, wherein the first pacing waveform has a first atrioventricular (AV) delay and the second pacing waveform has a second AV delay longer than the first AV delay. Physiologic information can be received from the patient, and one of the first or second pacing period for delivery to the patient can be determined using the received physiologic information.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 3, 2019
    Inventors: Stephen J. Hahn, Pramodsingh Hirasingh Thakur, Qi An, Viktoria A. Averina, Krzysztof Z. Siejko, Ramesh Wariar
  • Publication number: 20190299002
    Abstract: This document discusses, among other things, systems and methods to receive physiologic information from a patient during different first and second pacing periods having respective, different first and second atrioventricular (AV) delays, determine first and second physiologic parameters using respective received physiologic information from the first and second pacing periods, and adjust the first AV delay using the determined first and second physiologic parameters, wherein the second AV delay is longer than the first AV delay
    Type: Application
    Filed: March 27, 2019
    Publication date: October 3, 2019
    Inventors: Stephen J. Hahn, Pramodsingh Hirasingh Thakur, Qi An, Viktoria A. Averina, Krzysztof Z. Siejko, Ramesh Wariar
  • Patent number: 10426405
    Abstract: In some examples, cardiac cycle detection may be used as a more or less default approach to cardiac activity tracking. Additional rate measurement relying on different sources or analyses may require extra power consumption over the cycle detection methods. Therefore, new methods and devices are disclosed that selectively activate a second cardiac rate measurement when needed. In some illustrative methods and devices, decisions are made as to whether and which previously collected data, if any, is to be discarded, replaced, or corrected upon activation of the second cardiac rate measurement.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: October 1, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Krzysztof Z. Siejko, Amy Jean Brisben, Stephen J. Hahn, Keith L. Herrmann, Venugopal Allavatam