Patents by Inventor Stephen J. Hinkson

Stephen J. Hinkson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10864535
    Abstract: A system for fluid transport is provided where a quantity of fluid is held in a reservoir. A droplet generator is employed to generate droplets from the fluid, for example a nozzle-based system or a nozzleless system such as an acoustic ejection system. A generated droplet has a trajectory whereby it arrives at a target. A circuit is used to modify one or more characteristics of the generated droplet in a way which increases the likelihood that the droplet will not splash or bounce when it arrives at the target. The circuit may in different embodiments control the speed of the droplet or the Weber number of the droplet. The circuit may create an electric field in an area of space where the droplet passes. The circuit may charge the droplet by causing it to contact ions.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: December 15, 2020
    Assignee: Labcyte Inc.
    Inventors: Richard G. Stearns, Stephen J. Hinkson
  • Publication number: 20190160478
    Abstract: A system for fluid transport is provided where a quantity of fluid is held in a reservoir. A droplet generator is employed to generate droplets from the fluid, for example a nozzle-based system or a nozzleless system such as an acoustic ejection system. A generated droplet has a trajectory whereby it arrives at a target. A circuit is used to modify one or more characteristics of the generated droplet in a way which increases the likelihood that the droplet will not splash or bounce when it arrives at the target. The circuit may in different embodiments control the speed of the droplet or the Weber number of the droplet. The circuit may create an electric field in an area of space where the droplet passes. The circuit may charge the droplet by causing it to contact ions.
    Type: Application
    Filed: September 19, 2018
    Publication date: May 30, 2019
    Inventors: Richard G. Stearns, Stephen J. Hinkson
  • Patent number: 10118186
    Abstract: A system for fluid transport is provided where a quantity of fluid is held in a reservoir. A droplet generator is employed to generate droplets from the fluid, for example a nozzle-based system or a nozzleless system such as an acoustic ejection system. A generated droplet has a trajectory whereby it arrives at a target. A circuit is used to modify one or more characteristics of the generated droplet in a way which increases the likelihood that the droplet will not splash or bounce when it arrives at the target. The circuit may in different embodiments control the speed of the droplet or the Weber number of the droplet. The circuit may create an electric field in an area of space where the droplet passes. The circuit may charge the droplet by causing it to contact ions.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: November 6, 2018
    Assignee: Labcyte Inc.
    Inventors: Richard G. Stearns, Stephen J. Hinkson
  • Publication number: 20170216856
    Abstract: A system for fluid transport is provided where a quantity of fluid is held in a reservoir. A droplet generator is employed to generate droplets from the fluid, for example a nozzle-based system or a nozzleless system such as an acoustic ejection system. A generated droplet has a trajectory whereby it arrives at a target. A circuit is used to modify one or more characteristics of the generated droplet in a way which increases the likelihood that the droplet will not splash or bounce when it arrives at the target. The circuit may in different embodiments control the speed of the droplet or the Weber number of the droplet. The circuit may create an electric field in an area of space where the droplet passes. The circuit may charge the droplet by causing it to contact ions.
    Type: Application
    Filed: January 18, 2017
    Publication date: August 3, 2017
    Inventors: Richard G. Stearns, Stephen J. Hinkson
  • Patent number: 9586215
    Abstract: A system for fluid transport is provided where a quantity of fluid is held in a reservoir. A droplet generator is employed to generate droplets from the fluid, for example a nozzle-based system or a nozzleless system such as an acoustic ejection system. A generated droplet has a trajectory whereby it arrives at a target. A circuit is used to modify one or more characteristics of the generated droplet in a way which increases the likelihood that the droplet will not splash or bounce when it arrives at the target. The circuit may in different embodiments control the speed of the droplet or the Weber number of the droplet. The circuit may create an electric field in an area of space where the droplet passes. The circuit may charge the droplet by causing it to contact ions.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: March 7, 2017
    Assignee: Labcyte Inc.
    Inventors: Richard G. Stearns, Stephen J. Hinkson
  • Patent number: 8389295
    Abstract: A system for fluid transport is provided where a quantity of fluid is held in a reservoir. A droplet generator is employed to generate droplets from the fluid, for example a nozzle-based system or a nozzleless system such as an acoustic ejection system. A generated droplet has a trajectory whereby it arrives at a target. A circuit is used to modify one or more characteristics of the generated droplet in a way which increases the likelihood that the droplet will not splash or bounce when it arrives at the target. The circuit may in different embodiments control the speed of the droplet or the Weber number of the droplet. The circuit may create an electric field in an area of space where the droplet passes. The circuit may charge the droplet by causing it to contact ions.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: March 5, 2013
    Assignee: Labcyte Inc.
    Inventors: Richard G. Stearns, Stephen J. Hinkson
  • Publication number: 20110114743
    Abstract: A system for fluid transport is provided where a quantity of fluid is held in a reservoir. A droplet generator is employed to generate droplets from the fluid, for example a nozzle-based system or a nozzleless system such as an acoustic ejection system. A generated droplet has a trajectory whereby it arrives at a target. A circuit is used to modify one or more characteristics of the generated droplet in a way which increases the likelihood that the droplet will not splash or bounce when it arrives at the target. The circuit may in different embodiments control the speed of the droplet or the Weber number of the droplet. The circuit may create an electric field in an area of space where the droplet passes. The circuit may charge the droplet by causing it to contact ions.
    Type: Application
    Filed: November 11, 2010
    Publication date: May 19, 2011
    Applicant: LABCYTE INC.
    Inventors: Richard G. Stearns, Stephen J. Hinkson
  • Patent number: 6605081
    Abstract: Systems, methods and apparatus for generating images of portions of the patient's eye, such as the anterior surface of the cornea. The methods and apparatus of the present invention are particularly useful for directly imaging the profile of the ablated region of the cornea during or immediately following a laser ablation procedure, such as photorefractive keratometry (PRK), phototherapeutic keratectomy (PTK), laser in-situ keratomileusis (LASIK) or the like. These methods and apparatus allow the surgeon to precisely image the exterior edge of the eye to characterize the profile of ablated corneas and to determine the spatial variance of tissue ablation rates during the surgical procedures. Methods and apparatus are also provided for generating one or more images depicting the profile of the ablated region of the cornea. The profile is registered with a pre-ablation profile to provide feedback regarding the true ablation properties of the eye.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: August 12, 2003
    Assignee: Visx, Incorporated
    Inventors: John K. Shimmick, Stephen J. Hinkson, Charles R. Munnerlyn
  • Patent number: 6520958
    Abstract: Systems, methods and apparatus for generating images of portions of the patient's eye, such as the anterior surface of the cornea. The methods and apparatus of the present invention are particularly useful for directly imaging the profile of the ablated region of the cornea during or immediately following a laser ablation procedure, such as photorefractive keratometry (PRK), phototherapeutic keratectomy (PTK), laser in-situ keratomileusis (LASIK) or the like. These methods and apparatus allow the surgeon to precisely image the exterior edge of the eye to characterize the profile of ablated corneas and to determine the spatial variance of tissue ablation rates during the surgical procedures. Methods and apparatus are also provided for generating one or more images depicting the profile of the ablated region of the cornea. The profile is registered with a pre-ablation profile to provide feedback regarding the true ablation properties of the eye.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: February 18, 2003
    Assignee: VISX, Incorporated
    Inventors: John K. Shimmick, Stephen J. Hinkson, Charles R. Munnerlyn
  • Patent number: 6315413
    Abstract: Systems, methods and apparatus for generating images of portions of the patient's eye, such as the anterior surface of the cornea. The methods and apparatus of the present invention are particularly useful for directly imaging the profile of the ablated region of the cornea during or immediately following a laser ablation procedure, such as photorefractive keratometry (PRK), phototherapeutic keratectomy (PTK), laser in-situ keratomileusis (LASIK) or the like. These methods and apparatus allow the surgeon to precisely image the exterior edge of the eye to characterize the profile of ablated corneas and to determine the spatial variance of tissue ablation rates during the surgical procedures. Methods and apparatus are also provided for generating one or more images depicting the profile of the ablated region of the cornea. The profile is registered with a pre-ablation profile to provide feedback regarding the true ablation properties of the eye.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: November 13, 2001
    Assignee: VISX, Incorporated
    Inventors: John K. Shimmick, Stephen J. Hinkson, Charles R. Munnerlyn
  • Patent number: 6302876
    Abstract: Systems, methods and apparatus for generating images of portions of the patient's eye, such as the anterior surface of the cornea. The methods and apparatus of the present invention are particularly useful for directly imaging the profile of the ablated region of the cornea during or immediately following a laser ablation procedure, such as photorefractive keratometry (PRK), phototherapeutic keratectomy (PTK), laser in-situ keratomileusis (LASIK) or the like. These methods and apparatus allow the surgeon to precisely image the exterior edge of the eye to characterize the profile of ablated corneas and to determine the spatial variance of tissue ablation rates during the surgical procedures. Methods and apparatus are also provided for generating one or more images depicting the profile of the ablated region of the cornea. The profile is registered with a pre-ablation profile to provide feedback regarding the true ablation properties of the eye.
    Type: Grant
    Filed: May 22, 1998
    Date of Patent: October 16, 2001
    Assignee: Visx Corporation
    Inventors: John K. Shimmick, Stephen J. Hinkson, Charles R. Munnerlyn