Patents by Inventor Stephen J. Kelly

Stephen J. Kelly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957338
    Abstract: Stapling assemblies for use with a surgical stapler are provided. In one exemplary embodiment, the stapling assembly includes a cartridge having a plurality of staples disposed therein and a non-fibrous adjunct formed of at least one fused bioabsorbable polymer and configured to be releasably retained on the cartridge. Adjunct systems for use with a surgical stapler are also provided. Surgical end effectors using the stapling assemblies are also provided. Methods for manufacturing stapling assemblies and using the same are also provided.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: April 16, 2024
    Assignee: Cilag GmbH International
    Inventors: Jason L. Harris, Michael J. Vendely, Frederick E. Shelton, IV, Austin Bridges, Peyton Hopson, Jackie Donners, Hardik Kabaria, Farhad Javid, David Arthur Kelly, Elliott Baker, Stephen J. Peter, Xinyu Gu, Gina Michelle Policastro, Sharon Chen
  • Patent number: 11151336
    Abstract: Systems and methods for a reconfigurable radio front-end are provided. One system includes a device having an antenna, a first front-end communication section configured to communicate using a first communication method and a second front-end communication section configured to communicate using a second communication method, wherein the first and second communication methods are different communication methods. The device further includes a switch having an input configured to receive a control signal via a communication line to select the first front-end communication section or the second front-end communication section and a controller configured to control a state of the switch. The switch is configured to be switched between states when the controller receives the control signal, thereby allowing communication using the first communication method or the second communication method via the antenna.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: October 19, 2021
    Assignee: INTERMEC, INC.
    Inventors: Pavel Nikitin, Stephen J. Kelly, Antony Baskar Arul
  • Patent number: 10733394
    Abstract: A smart tag reading system is provided that has the ability to query sensor tags that have energy harvesting capability. In one embodiment, an adaptive reader system learns the state of each tag and how long the tag takes to charge. Tags that charge relatively quickly can be accessed more frequently. Others that do not charge as quickly, readings can be performed at much longer intervals allowing the tag a longer time to gather enough energy to complete the transaction. The reader query system can then adapt to the environment and state of the individual tags.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: August 4, 2020
    Assignee: INTERMEC IP CORP.
    Inventors: Stephen J. Kelly, Pavel Nikitin
  • Patent number: 10503937
    Abstract: A passive, self-steering antenna device is provided along with methods pertaining to operations and controls of the antenna device. The antenna device can include a main antenna for receiving an unmodulated wireless signal, a power harvester configured to obtain power from the unmodulated wireless signal, a main circuit disposed in a central region of the antenna device, and a plurality of peripheral distributed antenna elements configured to modify the radiation pattern of the antenna device. The antenna device can be configured to operate automatically device without needing control information in response to receiving a message from another antenna. Related methods include operations and controls for such an antenna device including automatically performing actions to enhance communications with another antenna device by selecting and activating a subset of the peripheral antenna elements to create a radiation pattern.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: December 10, 2019
    Assignee: INTERMEC, INC.
    Inventors: Pavel Nikitin, Stephen J. Kelly
  • Patent number: 10452968
    Abstract: A radio-frequency identification (RFID) tag with improved sensitivity includes an antenna that receives a radio-frequency (RF) signal and wireless power from an RFID reader. The RFID tag further includes a circuit that varies a reflection coefficient of the antenna to transmit a reflected signal to the reader, the reflected signal having periods of high reflectance when a relatively high amount of the RF signal is reflected, and low reflectance periods when a relatively low amount of the RF signal is reflected. The reflectance of the antenna is sufficiently low during the high reflectance periods to enable wireless power reception during the high reflectance periods.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: October 22, 2019
    Assignee: INTERMEC, INC.
    Inventors: Pavel Nikitin, Stephen J. Kelly, Rene Martinez
  • Patent number: 10445540
    Abstract: Systems and methods for a distributed antenna network are provided. One system includes a plurality of antenna modules coupled via a communication line, with each antenna module configured to be switched between a through state and a connected state using radio-frequency identification (RFID) control signals. The system further includes a plurality of antennas, with each antenna connected to a corresponding antenna module. A controller is coupled to the communication line and configured to transmit RFID control signals to the plurality of antenna modules to selectively activate one of the antenna modules by switching the antenna module to the connected state to thereby activate an antenna connected to the antenna module in the connected state.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: October 15, 2019
    Assignee: INTERMEC, INC.
    Inventors: Rene Martinez, Pavel Nikitin, Stephen J. Kelly, Jason Harrigan
  • Patent number: 10430622
    Abstract: A method for reconfiguring an RFID tag or RFID reader is disclosed. The method may include receiving a wireless signal from an RFID reader; processing, by an RFID circuit, the wireless signal received from the antenna; determining if a first sensor or switch that is connected to the RFID circuit is engaged or activated; outputting a first signal to the RFID circuit when the first sensor or switch is engaged or activated; and changing by the RFID circuit, at least one operating parameter of the RFID tag when the RFID circuit receives the first signal.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: October 1, 2019
    Assignee: INTERMEC, INC.
    Inventors: Pavel Nikitin, Rene Martinez, Stephen J. Kelly, Shashidhar Ramamurthy
  • Patent number: 10339346
    Abstract: Systems and methods for a reconfigurable antenna are provided. One system includes a device having a plurality of antenna elements configured to read a radio-frequency identification (RFID) tag and a switch having an input configured to receive a control signal from an RFID reader via a communication line to select one antenna of the plurality of antenna elements. The device further include a controller configured to control a state of the switch, wherein the switch is configured to be switched between states when the controller receives the RFID control signal comprising an address unique to the switch, thereby allowing the RFID reader to send an interrogation signal to and receive a response from the RFID tag in response to receiving the RFID control signal.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: July 2, 2019
    Assignee: INTERMEC, INC.
    Inventors: Pavel Nikitin, Rene Martinez, Stephen J. Kelly
  • Publication number: 20190138769
    Abstract: Systems and methods for a distributed antenna network are provided. One system includes a plurality of antenna modules coupled via a communication line, with each antenna module configured to be switched between a through state and a connected state using radio-frequency identification (RFID) control signals. The system further includes a plurality of antennas, with each antenna connected to a corresponding antenna module. A controller is coupled to the communication line and configured to transmit RFID control signals to the plurality of antenna modules to selectively activate one of the antenna modules by switching the antenna module to the connected state to thereby activate an antenna connected to the antenna module in the connected state.
    Type: Application
    Filed: December 17, 2018
    Publication date: May 9, 2019
    Applicant: INTERMEC, INC.
    Inventors: Rene MARTINEZ, Pavel NIKITIN, Stephen J. KELLY, Jason HARRIGAN
  • Patent number: 10185849
    Abstract: Systems and methods for a distributed antenna network are provided. One system includes a plurality of antenna modules coupled via a communication line, with each antenna module configured to be switched between a through state and a connected state using radio-frequency identification (RFID) control signals. The system further includes a plurality of antennas, with each antenna connected to a corresponding antenna module. A controller is coupled to the communication line and configured to transmit RFID control signals to the plurality of antenna modules to selectively activate one of the antenna modules by switching the antenna module to the connected state to thereby activate an antenna connected to the antenna module in the connected state.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: January 22, 2019
    Assignee: INTERMEC, INC.
    Inventors: Rene Martinez, Pavel Nikitin, Stephen J. Kelly, Jason Harrigan
  • Patent number: 10186136
    Abstract: Passive wireless transponders can perform transponder-to-transponder communication when illuminated by an interrogation carrier wave. The transponder-to-transponder communication permits each transponder to determine the identity of “other” proximately transponders. The transponder-to-transponder communication optionally permits each transponder to identify a “nearest neighbor” using one or more backscatter signal properties such as received signal strength or time-of-flight. Using this information and one or more externally supplied or internally stored instruction sets transponders can provide neighboring transponder data to an interrogator. Using this “neighbor” data, the interrogator can provide a system user with data indicative of the relative locations of a plurality of tags arranged in a one or two dimensional matrix.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: January 22, 2019
    Assignee: INTERMEC IP CORP.
    Inventors: Pavel Nikitin, Stephen J. Kelly
  • Publication number: 20190012493
    Abstract: Systems and methods for a reconfigurable radio front-end are provided. One system includes a device having an antenna, a first front-end communication section configured to communicate using a first communication method and a second front-end communication section configured to communicate using a second communication method, wherein the first and second communication methods are different communication methods. The device further includes a switch having an input configured to receive a control signal via a communication line to select the first front-end communication section or the second front-end communication section and a controller configured to control a state of the switch. The switch is configured to be switched between states when the controller receives the control signal, thereby allowing communication using the first communication method or the second communication method via the antenna.
    Type: Application
    Filed: July 7, 2017
    Publication date: January 10, 2019
    Applicant: INTERMEC, INC.
    Inventors: Pavel NIKITIN, Stephen J. KELLY, Antony Baskar ARUL
  • Publication number: 20190005283
    Abstract: A method for reconfiguring an RFID tag or RFID reader is disclosed.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 3, 2019
    Applicant: INTERMEC, INC.
    Inventors: Pavel NIKITIN, Rene MARTINEZ, Stephen J. KELLY, Shashidhar RAMAMURTHY
  • Publication number: 20180373909
    Abstract: Systems and methods for a reconfigurable antenna are provided. One system includes a device having a plurality of antenna elements configured to read a radio-frequency identification (RFID) tag and a switch having an input configured to receive a control signal from an RFID reader via a communication line to select one antenna of the plurality of antenna elements. The device further include a controller configured to control a state of the switch, wherein the switch is configured to be switched between states when the controller receives the RFID control signal comprising an address unique to the switch, thereby allowing the RFID reader to send an interrogation signal to and receive a response from the RFID tag in response to receiving the RFID control signal.
    Type: Application
    Filed: June 26, 2017
    Publication date: December 27, 2018
    Applicant: INTERMEC, INC.
    Inventors: Pavel NIKITIN, Rene MARTINEZ, Stephen J. KELLY
  • Patent number: 10163282
    Abstract: Systems and methods for authentication are provided. One system includes a device configured to sense electrical characteristics of an item coupled with a person and a memory storing a plurality of electrical signatures corresponding to measured electrical characteristics for a plurality of items. The system also includes a controller operable on a processor to determine if an electrical signature determined from sensed electrical characteristics of the item coupled with the person match one of the plurality of electrical signatures stored in the memory to authenticate the person having the item coupled thereto.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: December 25, 2018
    Assignee: INTERMEC, INC.
    Inventors: Pavel Nikitin, Stephen J. Kelly
  • Publication number: 20180365549
    Abstract: A radio-frequency identification (RFID) tag with improved sensitivity includes an antenna that receives a radio-frequency (RF) signal and wireless power from an RFID reader. The RFID tag further includes a circuit that varies a reflection coefficient of the antenna to transmit a reflected signal to the reader, the reflected signal having periods of high reflectance when a relatively high amount of the RF signal is reflected, and low reflectance periods when a relatively low amount of the RF signal is reflected. The reflectance of the antenna is sufficiently low during the high reflectance periods to enable wireless power reception during the high reflectance periods.
    Type: Application
    Filed: June 14, 2017
    Publication date: December 20, 2018
    Applicant: INTERMEC, INC.
    Inventors: Pavel NIKITIN, Stephen J. KELLY, Rene MARTINEZ
  • Patent number: 10114985
    Abstract: Systems and methods for radio-frequency identification (RFID) tag communication are provided. One radio-frequency identification (RFID) tag includes a communication device configured to communicate with an RFID reader and an impedance element configured to change an variable impedance of the RFID tag. The RFID tag further includes at least one switch connected to the impedance element and a controller connected to the at least one switch and configured to control operation of the switch between open and closed states based on a control signal received from the RFID reader, wherein the variable impedance of the RFID tag is changed between a first modulating impedance value and a second modulating impedance value when the switch is changed between the open and closed states.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: October 30, 2018
    Assignee: INTERMEC, INC.
    Inventors: Pavel Nikitin, Stephen J. Kelly, Rene Martinez
  • Patent number: 10096898
    Abstract: A passive, self-reconfigurable antenna device, components of a corresponding wireless network, and methods pertaining to operations and controls of the antenna device are provided. The antenna device can include at least one antenna element configured to receive a modulated or unmodulated wireless signal, a power harvester configured to obtain power from the modulated or unmodulated wireless signal, and a first switch coupled to the power harvester and powered by the obtained power from the power harvester. The first switch can be configured to operate automatically when receiving the obtained power without requiring the receipt of control information. Further, the first switch can be configured to automatically operate according to one or more predetermined operating patterns when receiving the obtained power to modulate the corresponding antenna element. This way, antenna operating frequency, or radiation pattern or polarization states can be reconfigured.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: October 9, 2018
    Assignee: INTERMEC, INC.
    Inventors: Pavel Nikitin, Stephen J. Kelly
  • Publication number: 20180247091
    Abstract: Systems and methods for radio-frequency identification (RFID) tag communication are provided. One radio-frequency identification (RFID) tag includes a communication device configured to communicate with an RFID reader and an impedance element configured to change an variable impedance of the RFID tag. The RFID tag further includes at least one switch connected to the impedance element and a controller connected to the at least one switch and configured to control operation of the switch between open and closed states based on a control signal received from the RFID reader, wherein the variable impedance of the RFID tag is changed between a first modulating impedance value and a second modulating impedance value when the switch is changed between the open and closed states.
    Type: Application
    Filed: April 27, 2018
    Publication date: August 30, 2018
    Applicant: INTERMEC, INC.
    Inventors: Pavel NIKITIN, Stephen J. KELLY, Rene MARTINEZ
  • Publication number: 20180197394
    Abstract: Passive wireless transponders can perform transponder-to-transponder communication when illuminated by an interrogation carrier wave. The transponder-to-transponder communication permits each transponder to determine the identity of “other” proximately transponders. The transponder-to-transponder communication optionally permits each transponder to identify a “nearest neighbor” using one or more backscatter signal properties such as received signal strength or time-of-flight. Using this information and one or more externally supplied or internally stored instruction sets transponders can provide neighboring transponder data to an interrogator. Using this “neighbor” data, the interrogator can provide a system user with data indicative of the relative locations of a plurality of tags arranged in a one or two dimensional matrix.
    Type: Application
    Filed: March 5, 2018
    Publication date: July 12, 2018
    Applicant: INTERMEC IP CORP.
    Inventors: Pavel NIKITIN, Stephen J. KELLY