Patents by Inventor Stephen J. Keville

Stephen J. Keville has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7155291
    Abstract: Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system that transfers energy from one side of a physical boundary to another side of the boundary. In one example, a power supply and a primary winding are located on a first side of a physical boundary (e.g., external to a body), and a secondary winding and the load are located on a second side of the physical boundary (e.g., internal to the body). A primary voltage across the primary winding is regulated so as to provide a sufficiently stable output power to the load notwithstanding changes in the load and/or changes in a relative position of the primary winding and the secondary winding. One aspect of the invention relates to energy transfer methods and apparatus for use in connection with the human body. In particular, one example of the invention includes a transcutaneous energy transfer (TET) system for transferring power from a power supply external to the body to a device implanted in the body.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: December 26, 2006
    Assignee: Abiomed, Inc.
    Inventors: Farhad Zarinetchi, Stephen J. Keville
  • Patent number: 7062331
    Abstract: Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system that transfers energy from one side of a physical boundary to another side of he boundary. In one example, a power supply and a primary winding are located on a first side of a physical boundary (e.g., external to a body), and a secondary winding and the load are located on a second side of the physical boundary (e.g., internal to the body). A primary voltage across the primary winding is regulated so as to provide a sufficiently stable output power to the load notwithstanding changes in the load and/or changes in a relative position of the primary winding and the secondary winding. One aspect of the invention relates to energy transfer methods and apparatus for use in connection with the human body. In particular, one example of the invention includes a transcutaneous energy transfer (TET) system for transferring power from a power supply external to the body to a device implanted in the body.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: June 13, 2006
    Assignee: Abiomed, Inc.
    Inventors: Farhad Zarinetchi, Stephen J. Keville
  • Patent number: 6496733
    Abstract: The invention provides a transcutaneous energy transfer device having an external primary coil and an implanted secondary coil inductively coupled to the primary coil, electronic components subcutaneously mounted within the secondary coil and a mechanism which reduces inductive heating of such components by the magnetic field of the secondary coil. For one embodiment of the invention, the mechanism for reducing inductive heating includes a cage formed of a high magnetic permeability material in which the electronic components are mounted, which cage guides the flux around the components to prevent heating thereof. For an alternative embodiment of the invention, a secondary coil has an outer winding and either a counter-wound inner winding or an inner winding in the magnetic field of the outer winding. For either arrangement of the inner coil, the inner coil generates a magnetic field substantially canceling the magnetic field of the outer coil in the area in which the electronic components are mounted.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: December 17, 2002
    Assignee: Abiomed, Inc.
    Inventors: Farhad Zarinetchi, Robert M. Hart, Michael G. Verga, Stephen J. Keville
  • Publication number: 20020128690
    Abstract: Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system that transfers energy from one side of a physical boundary to another side of he boundary. In one example, a power supply and a primary winding are located on a first side of a physical boundary (e.g., external to a body), and a secondary winding and the load are located on a second side of the physical boundary (e.g., internal to the body). A primary voltage across the primary winding is regulated so as to provide a sufficiently stable output power to the load notwithstanding changes in the load and/or changes in a relative position of the primary winding and the secondary winding. One aspect of the invention relates to energy transfer methods and apparatus for use in connection with the human body. In particular, one example of the invention includes a transcutaneous energy transfer (TET) system for transferring power from a power supply external to the body to a device implanted in the body.
    Type: Application
    Filed: May 1, 2002
    Publication date: September 12, 2002
    Applicant: ABIOMED, INC.
    Inventors: Farhad Zarinetchi, Stephen J. Keville
  • Publication number: 20020123779
    Abstract: Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system that transfers energy from one side of a physical boundary to another side of the boundary. In one example, a power supply and a primary winding are located on a first side of a physical boundary (e.g., external to a body), and a secondary winding and the load are located on a second side of the physical boundary (e.g., internal to the body). A primary voltage across the primary winding is regulated so as to provide a sufficiently stable output power to the load notwithstanding changes in the load and/or changes in a relative position of the primary winding and the secondary winding. One aspect of the invention relates to energy transfer methods and apparatus for use in connection with the human body. In particular, one example of the invention includes a transcutaneous energy transfer (TET) system for transferring power from a power supply external to the body to a device implanted in the body.
    Type: Application
    Filed: May 1, 2002
    Publication date: September 5, 2002
    Applicant: ABIOMED, INC.
    Inventors: Farhad Zarinetchi, Stephen J. Keville
  • Patent number: 6442434
    Abstract: Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system that transfers energy from one side of a physical boundary to another side of the boundary. In one example, a power supply and a primary winding are located on a first side of a physical boundary (e.g., external to a body), and a secondary winding and the load are located on a second side of the physical boundary (e.g., internal to the body). A primary voltage across the primary winding is regulated so as to provide a sufficiently stable output power to the load notwithstanding changes in the load and/or changes in a relative position of the primary winding and the secondary winding. One aspect of the invention relates to energy transfer methods and apparatus for use in connection with the human body. In particular, one example of the invention includes a transcutaneous energy transfer (TET) system for transferring power from a power supply external to the body to a device implanted in the body.
    Type: Grant
    Filed: August 9, 2000
    Date of Patent: August 27, 2002
    Assignee: Abiomed, Inc.
    Inventors: Farhad Zarinetchi, Stephen J. Keville
  • Publication number: 20020058971
    Abstract: A transcutaneous energy transfer device is provided which has a magnetic shield covering the primary winding of the device to reduce sensitivity of the device to conducting objects in the vicinity of the coils and to increase the percentage of magnetic field generated by the primary coil which reaches the secondary coil. This shield is preferably larger than the primary coil in all dimensions and is either formed of a high permeability flexible material, for example a low loss magnetic material in a flexible polymer matrix, with perforations formed in the material sufficient to permit ventilation of the patient's skin situated under the shield, or the shield may be formed of segments of very high permeability material connected by a flexible, porous mesh material.
    Type: Application
    Filed: December 31, 2001
    Publication date: May 16, 2002
    Applicant: ABIOMED, INC.
    Inventors: Farhad Zarinetchi, Stephen J. Keville
  • Patent number: 6389318
    Abstract: A transcutaneous energy transfer device is provided which has a magnetic shield covering the primary winding of the device to reduce sensitivity of the device to conducting objects in the vicinity of the coils and to increase the percentage of magnetic field generated by the primary coil which reaches the secondary coil. This shield is preferably larger than the primary coil in all dimensions and is either formed of a high permeability flexible material, for example a low loss magnetic material in a flexible polymer matrix, with perforations formed in the material sufficient to permit ventilation of the patient's skin situated under the shield, or the shield may be formed of segments of very high permeability material connected by a flexible, porous mesh material.
    Type: Grant
    Filed: July 2, 1999
    Date of Patent: May 14, 2002
    Assignee: Abiomed, Inc.
    Inventors: Farhad Zarinetchi, Stephen J. Keville
  • Publication number: 20020055763
    Abstract: A transcutaneous energy transfer device is provided which has a magnetic shield covering the primary winding of the device to reduce sensitivity of the device to conducting objects in the vicinity of the coils and to increase the percentage of magnetic field generated by the primary coil which reaches the secondary coil. This shield is preferably larger than the primary coil in all dimensions and is either formed of a high permeability flexible material, for example a low loss magnetic material in a flexible polymer matrix, with perforations formed in the material sufficient to permit ventilation of the patient's skin situated under the shield, or the shield may be formed of segments of very high permeability material connected by a flexible, porous mesh material.
    Type: Application
    Filed: December 31, 2001
    Publication date: May 9, 2002
    Applicant: ABIOMED, INC.
    Inventors: Farhad Zarinetchi, Stephen J. Keville
  • Publication number: 20020038138
    Abstract: The invention provides a transcutaneous energy transfer device having an external primary coil and an implanted secondary coil inductively coupled to the primary coil, electronic components subcutaneously mounted within the secondary coil and a mechanism which reduces inductive heating of such components by the magnetic field of the secondary coil. For one embodiment of the invention, the mechanism for reducing inductive heating includes a cage formed of a high magnetic permeability material in which the electronic components are mounted, which cage guides the flux around the components to prevent heating thereof. For an alternative embodiment of the invention, a secondary coil has an outer winding and either a counter-wound inner winding or an inner winding in the magnetic field of the outer winding. For either arrangement of the inner coil, the inner coil generates a magnetic field substantially canceling the magnetic field of the outer coil in the area in which the electronic components are mounted.
    Type: Application
    Filed: September 20, 2001
    Publication date: March 28, 2002
    Inventors: Farhad Zarinetchi, Robert M. Hart, Michael G. Verga, Stephen J. Keville
  • Publication number: 20020032472
    Abstract: The invention provides a transcutaneous energy transfer device having an external primary coil and an implanted secondary coil inductively coupled to the primary coil, electronic components subcutaneously mounted within the secondary coil and a mechanism which reduces inductive heating of such components by the magnetic field of the secondary coil. For one embodiment of the invention, the mechanism for reducing inductive heating includes a cage formed of a high magnetic permeability material in which the electronic components are mounted, which cage guides the flux around the components to prevent heating thereof. For an alternative embodiment of the invention, a secondary coil has an outer winding and either a counter-wound inner winding or an inner winding in the magnetic field of the outer winding. For either arrangement of the inner coil, the inner coil generates a magnetic field substantially canceling the magnetic field of the outer coil in the area in which the electronic components are mounted.
    Type: Application
    Filed: September 20, 2001
    Publication date: March 14, 2002
    Inventors: Farhad Zarinetchi, Robert M. Hart, Michael G. Verga, Stephen J. Keville
  • Patent number: 6324431
    Abstract: The invention provides a transcutaneous energy transfer device having an external primary coil and an implanted secondary coil inductively coupled to the primary coil, electronic components subcutaneously mounted within the secondary coil and a mechanism which reduces inductive heating of such components by the magnetic field of the secondary coil. For one embodiment of the invention, the mechanism for reducing inductive heating includes a cage formed of a high magnetic permeability material in which the electronic components are mounted, which cage guides the flux around the components to prevent heating thereof. For an alternative embodiment of the invention, a secondary coil has an outer winding and either a counter-wound inner winding or an inner winding in the magnetic field of the outer winding. For either arrangement of the inner coil, the inner coil generates a magnetic field substantially canceling the magnetic field of the outer coil in the area in which the electronic components are mounted.
    Type: Grant
    Filed: July 2, 1999
    Date of Patent: November 27, 2001
    Assignee: Abiomed, Inc.
    Inventors: Farhad Zarinetchi, Robert M. Hart, Michael G. Verga, Stephen J. Keville
  • Patent number: 6324430
    Abstract: A transcutaneous energy transfer device is provided which has a magnetic shield covering the primary winding of the device to reduce sensitivity of the device to conducting objects in the vicinity of the coils and to increase the percentage of magnetic field generated by the primary coil which reaches the secondary coil. This shield is preferably larger than the primary coil in all dimensions and is either formed of a high permeability flexible material, for example a low loss magnetic material in a flexible polymer matrix, with perforations formed in the material sufficient to permit ventilation of the patient's skin situated under the shield, or the shield may be formed of segments of very high permeability material connected by a flexible, porous mesh material.
    Type: Grant
    Filed: July 6, 1998
    Date of Patent: November 27, 2001
    Assignee: Abiomed, Inc.
    Inventors: Farhad Zarinetchi, Stephen J. Keville, Robert M. Hart