Patents by Inventor Stephen J. Sanchez

Stephen J. Sanchez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7138868
    Abstract: A method and circuit for trimming a current source packaged with a device can facilitate trimming of the current source without the need for additional pins or dual function pins, resulting in improved accuracy and/or simplified trimming techniques. An exemplary packaged device is configured with a trimming circuit comprising a current trimming network and a coupling circuit. An exemplary packaged device can comprise any op amp, current or voltage reference, and/or sensor device, and is configured with one or more monitor inputs. An exemplary current trimming network comprises a variable current source and a reference current source, wherein a magnitude of the variable current source can be compared to the magnitude of the reference current source. An exemplary coupling circuit is coupled between the current trimming network and the device and is configured for enabling and disabling connection of an output of the current trimming network and a monitor input of the device.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: November 21, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Stephen J. Sanchez, Daryl Hiser
  • Patent number: 7029932
    Abstract: Parametric testing of an integrated circuit chip includes pressing first, second, and third contact elements (PRB-1,2,3) against first, second and third terminals (P1–3), respectively, of the integrated circuit and forcing first, second, and third reference currents (Iref) through first, second, and third circuit paths each including a corresponding ESD diode. Each path includes two of the contact elements, two associated contact resistances, and one of the ESD diodes. First, second, and third voltages (Vm1–3) are measured across the three circuit paths. Three equations representative of the three voltages are simultaneously solved to determine three contact resistances between the various contact elements and integrated circuit terminals. The voltages across the three contact resistances are computed by multiplying them by parametric test currents and are added to or subtracted from measured voltages of the contact elements to obtain accurate values of voltages of the integrated circuit terminals.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: April 18, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Daryl T. Hiser, Stephen J. Sanchez
  • Patent number: 6927624
    Abstract: A method and circuit is provided for improving the control of the trimming procedure for various devices without the need for additional dedicated control pins. Instead, the trimming procedure is controlled through sensing of changes in current and/or voltage applied through the existing available pins or bondpads of the devices to determine whether a command for trim programming has occurred. As a result, package-level trimming of the devices can be conducted in standard device packages having low pin count configurations, such as operational amplifiers, instrumentation amplifiers, difference amplifiers, low drop-out regulators, voltage references and other similar types of devices. A device to be trimmed is configured with internal circuitry configured to sense changes in current and/or voltage in the output or supply voltage of the device, and a test system for applying changes in the current and/or voltage through the existing available pins or bondpads of the devices.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: August 9, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Vadim V. Ivanov, Stephen J. Sanchez, David M. Jones, David Spady
  • Publication number: 20040251959
    Abstract: A method and circuit is provided for improving the control of the trimming procedure for various devices without the need for additional dedicated control pins. Instead, the trimming procedure is controlled through sensing of changes in current and/or voltage applied through the existing available pins or bondpads of the devices to determine whether a command for trim programming has occurred. As a result, package-level trimming of the devices can be conducted in standard device packages having low pin count configurations, such as operational amplifiers, instrumentation amplifiers, difference amplifiers, low drop-out regulators, voltage references and other similar types of devices. A device to be trimmed is configured with internal circuitry configured to sense changes in current and/or voltage in the output or supply voltage of the device, and a test system for applying changes in the current and/or voltage through the existing available pins or bondpads of the devices.
    Type: Application
    Filed: June 12, 2003
    Publication date: December 16, 2004
    Applicant: Texas Instruments Incorporated
    Inventors: Vadim V. Ivanov, Stephen J. Sanchez, David M. Jones, David Spady
  • Patent number: 6828856
    Abstract: A gain boost circuit is provided in a differential amplifier including differentially connected first and second input transistors the drains of which are coupled to sources of first and second cascode transistors. A third cascode transistor has a source coupled to a drain of the first cascode transistor and a drain coupled to a bias current source. A gain boost amplifier has an output coupled to the gate of the third cascode transistor, a first input coupled to the drain of the first cascode transistor, and a second input coupled to the drain of the second cascode transistor.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: December 7, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Stephen J. Sanchez, Vadim V. Ivanov, Walter B. Meinel
  • Patent number: 6825721
    Abstract: A gain boost circuit is provided in a differential amplifier including differentially connected first and second input transistors the drains of which are coupled to sources of first and second cascode transistors. A third cascode transistor has a source coupled to a drain of the first cascode transistor and a drain coupled to a bias current source. A gain boost amplifier has an output coupled to the gate of the third cascode transistor, a first input coupled to the drain of the first cascode transistor, and a second input coupled to the drain of the second cascode transistor.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: November 30, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Stephen J. Sanchez, Vadim V. Ivanov, Walter B. Meinel
  • Publication number: 20040090268
    Abstract: A gain boost circuit is provided in a differential amplifier including differentially connected first and second input transistors the drains of which are coupled to sources of first and second cascode transistors. A third cascode transistor has a source coupled to a drain of the first cascode transistor and a drain coupled to a bias current source. A gain boost amplifier has an output coupled to the gate of the third cascode transistor, a first input coupled to the drain of the first cascode transistor, and a second input coupled to the drain of the second cascode transistor.
    Type: Application
    Filed: October 31, 2003
    Publication date: May 13, 2004
    Inventors: Stephen J. Sanchez, Vadim V. Ivanov, Walter B. Meinel
  • Publication number: 20040008086
    Abstract: A gain boost circuit is provided in a differential amplifier including differentially connected first and second input transistors the drains of which are coupled to sources of first and second cascode transistors. A third cascode transistor has a source coupled to a drain of the first cascode transistor and a drain coupled to a bias current source. A gain boost amplifier has an output coupled to the gate of the third cascode transistor, a first input coupled to the drain of the first cascode transistor, and a second input coupled to the drain of the second cascode transistor.
    Type: Application
    Filed: July 12, 2002
    Publication date: January 15, 2004
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Stephen J. Sanchez, Vadim V. Ivanov, Walter B. Meinel
  • Patent number: 6545538
    Abstract: A rail-to-rail class AB output stage includes a P-channel pull-up transistor (4) having a source coupled to a first supply rail voltage (V+), a gate coupled to a first input conductor (2) of the output stage, and a drain coupled to an output terminal (6) of the output stage. An N-channel pull-down transistor (5) includes a source coupled to a second supply rail voltage (GROUND), a gate coupled to a second input conductor (3) of the output stage, and a drain coupled to the output terminal (6). A P-channel first bias transistor (20) includes a source coupled to the first input conductor (2) and a drain coupled to the second input terminal (3). A first bias circuit coupled between the first and second supply rail voltages produces a first bias voltage (21) on a gate of the first bias transistor (20). A P-channel second bias transistor (10) includes a source coupled to be first input conductor (2).
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: April 8, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Vadim V. Ivanov, Gregory H. Johnson, Stephen J. Sanchez