Patents by Inventor Stephen Jesse

Stephen Jesse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9097738
    Abstract: Scanning probe microscopy may include a method for generating a band excitation (BE) signal and simultaneously exciting a probe at a plurality of frequencies within a predetermined frequency band based on the excitation signal. A response of the probe is measured across a subset of frequencies of the predetermined frequency band and the excitation signal is adjusted based on the measured response.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: August 4, 2015
    Assignee: UT-Battelle, LLC
    Inventors: Stephen Jesse, Sergei V. Kalinin
  • Publication number: 20150089693
    Abstract: A multi-resonant detection system (MRD) chip comprises an AFM tip, a cantilever, and resonator members separately positioned relative to the cantilever and tip. The chip may be fabricated from a silicon wafer. Frequency of tip motion is detected or actuated by displacement of resonator members. A rigid member, which is coupled to the chip by flexible members, coupled to the resonator members and rigidly coupled to the cantilever, enables tip motion. Resonator members include an array of discrete resonator bars, a single resonator bar or a continuous membrane which resonates at a continuous range of frequency. Tip motion is detected by measuring displacement of the resonator members using angle of light reflection, capacitance, piezo-resistive or piezo-strain techniques. Tip motion is actuated using displacement of the resonator members and capacitive, piezo-strain or piezo-resistive techniques. Resonator members may be encased by cover plates and/or hermetically sealed for measurements in a liquid medium.
    Type: Application
    Filed: August 15, 2014
    Publication date: March 26, 2015
    Inventor: Stephen Jesse
  • Patent number: 8752211
    Abstract: An excitation voltage biases an ionic conducting material sample over a nanoscale grid. The bias sweeps a modulated voltage with increasing maximal amplitudes. A current response is measured at grid locations. Current response reversal curves are mapped over maximal amplitudes of the bias cycles. Reversal curves are averaged over the grid for each bias cycle and mapped over maximal bias amplitudes for each bias cycle. Average reversal curve areas are mapped over maximal amplitudes of the bias cycles. Thresholds are determined for onset and ending of electrochemical activity. A predetermined number of bias sweeps may vary in frequency where each sweep has a constant number of cycles and reversal response curves may indicate ionic diffusion kinetics.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: June 10, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Sergei V. Kalinin, Nina Balke, Albina Y. Borisevich, Stephen Jesse, Petro Maksymovych, Yunseok Kim, Evgheni Strelcov
  • Patent number: 8719961
    Abstract: A method and system for probing mobile ion diffusivity and electrochemical reactivity on a nanometer length scale of a free electrochemically active surface includes a control module that biases the surface of the material. An electrical excitation signal is applied to the material and induces the movement of mobile ions. An SPM probe in contact with the surface of the material detects the displacement of mobile ions at the surface of the material. A detector measures an electromechanical strain response at the surface of the material based on the movement and reactions of the mobile ions. The use of an SPM tip to detect local deformations allows highly reproducible measurements in an ambient environment without visible changes in surface structure. The measurements illustrate effective spatial resolution comparable with defect spacing and well below characteristic grain sizes of the material.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: May 6, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Sergei V. Kalinin, Nina Balke, Amit Kumar, Nancy J. Dudney, Stephen Jesse
  • Publication number: 20140042373
    Abstract: The present invention, in one embodiment, provides a method of forming an organic electric device that includes providing a plurality of carbon nanostructures; and dispersing the plurality of carbon nanostructures in a polymeric matrix to provide a polymeric composite, wherein when the plurality of carbon nanostructures are present at a first concentration an interface of the plurality of carbon nanostructures and the polymeric matrix is characterized by charge transport when an external energy is applied, and when the plurality of carbon nanostructures are present at a second concentration the interface of the plurality of carbon nanostructures and the polymeric matrix are characterized by exciton dissociation when an external energy is applied, wherein the first concentration is less than the second concentration.
    Type: Application
    Filed: September 9, 2013
    Publication date: February 13, 2014
    Applicants: University of Tennessee Research Foundation, UT-BATTELLE LLC
    Inventors: David Bruce Geohegan, Ilia N. Ivanov, Alexander A. Puretzky, Stephen Jesse, Bin Hu, Matthew Garrett, Bin Zhao
  • Publication number: 20140041085
    Abstract: An excitation voltage biases an ionic conducting material sample over a nanoscale grid. The bias sweeps a modulated voltage with increasing maximal amplitudes. A current response is measured at grid locations. Current response reversal curves are mapped over maximal amplitudes of the bias cycles. Reversal curves are averaged over the grid for each bias cycle and mapped over maximal bias amplitudes for each bias cycle. Average reversal curve areas are mapped over maximal amplitudes of the bias cycles. Thresholds are determined for onset and ending of electrochemical activity. A predetermined number of bias sweeps may vary in frequency where each sweep has a constant number of cycles and reversal response curves may indicate ionic diffusion kinetics.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 6, 2014
    Inventors: Sergei V. Kalinin, Nina Balke, Albina Y. Borisevich, Stephen Jesse, Petro Maksymovych, Yunseok Kim, Evgheni Strelcov
  • Patent number: 8540542
    Abstract: The present invention, in one embodiment, provides a method of forming an organic electric device that includes providing a plurality of carbon nanostructures; and dispersing the plurality of carbon nanostructures in a polymeric matrix to provide a polymeric composite, wherein when the plurality of carbon nanostructures are present at a first concentration an interface of the plurality of carbon nanostructures and the polymeric matrix is characterized by charge transport when an external energy is applied, and when the plurality of carbon nanostructures are present at a second concentration the interface of the plurality of carbon nanostructures and the polymeric matrix are characterized by exciton dissociation when an external energy is applied, wherein the first concentration is less than the second concentration.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: September 24, 2013
    Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation
    Inventors: David Bruce Geohegan, Ilia N. Ivanov, Alexander A. Puretzky, Stephen Jesse, Bin Hu, Matthew Garrett, Bin Zhao
  • Patent number: 8484759
    Abstract: An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: July 9, 2013
    Assignee: UT-Battelle, LLC
    Inventors: Stephen Jesse, Sergei V. Kalinin, Maxim P. Nikiforov
  • Patent number: 8448502
    Abstract: Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation).
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: May 28, 2013
    Assignee: UT Battelle, LLC
    Inventors: Stephen Jesse, Sergei V. Kalinin
  • Publication number: 20130111636
    Abstract: This system includes non-linear interaction imaging and spectroscopy (“NIIS”) for scanning probe microscopy. Scanning probe microscopy operates with an oscillating tip and cantilever to monitor characteristics of the oscillation and NIIS measures both the linear and non-linear components of the interactions between the probe tip and the surface.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 2, 2013
    Applicant: UT-BATTELLE, LLC
    Inventor: Stephen Jesse
  • Patent number: 8384020
    Abstract: A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200° C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: February 26, 2013
    Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation
    Inventors: Stephen Jesse, Gary J. Van Berkel, Olga S. Ovchinnikova
  • Publication number: 20120125783
    Abstract: A method and system for probing mobile ion diffusivity and electrochemical reactivity on a nanometer length scale of a free electrochemically active surface includes a control module that biases the surface of the material. An electrical excitation signal is applied to the material and induces the movement of mobile ions. An SPM probe in contact with the surface of the material detects the displacement of mobile ions at the surface of the material. A detector measures an electromechanical strain response at the surface of the material based on the movement and reactions of the mobile ions. The use of an SPM tip to detect local deformations allows highly reproducible measurements in an ambient environment without visible changes in surface structure. The measurements illustrate effective spatial resolution comparable with defect spacing and well below characteristic grain sizes of the material.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 24, 2012
    Inventors: Sergei V. Kalinin, Nina Balke, Amit Kumar, Nancy J. Dudney, Stephen Jesse
  • Publication number: 20110212554
    Abstract: The present invention, in one embodiment, provides a method of forming an organic electric device that includes providing a plurality of carbon nanostructures; and dispersing the plurality of carbon nanostructures in a polymeric matrix to provide a polymeric composite, wherein when the plurality of carbon nanostructures are present at a first concentration an interface of the plurality of carbon nanostructures and the polymeric matrix is characterized by charge transport when an external energy is applied, and when the plurality of carbon nanostructures are present at a second concentration the interface of the plurality of carbon nanostructures and the polymeric matrix are characterized by exciton dissociation when an external energy is applied, wherein the first concentration is less than the second concentration.
    Type: Application
    Filed: April 8, 2011
    Publication date: September 1, 2011
    Applicants: UT-BATTELLE LLC, UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION
    Inventors: David Bruce Geohegan, Ilia N. Ivanov, Alexander A. Puretzky, Stephen Jesse, Bin Hu, Matthew Garrett, Bin Zhao
  • Patent number: 7923922
    Abstract: The present invention, in one embodiment, provides a method of forming an organic electric device that includes providing a plurality of carbon nanostructures; and dispersing the plurality of carbon nanostructures in a polymeric matrix to provide a polymeric composite, wherein when the plurality of carbon nanostructures are present at a first concentration an interface of the plurality of carbon nanostructures and the polymeric matrix is characterized by charge transport when an external energy is applied, and when the plurality of carbon nanostructures are present at a second concentration the interface of the plurality of carbon nanostructures and the polymeric matrix are characterized by exciton dissociation when an external energy is applied, wherein the first concentration is less than the second concentration.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: April 12, 2011
    Assignee: UT-Battelle, LLC
    Inventors: David Bruce Geohegan, Ilia N. Ivanov, Alexander A. Puretzky, Stephen Jesse, Bin Hu, Matthew Garrett, Bin Zhao
  • Publication number: 20110041223
    Abstract: An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.
    Type: Application
    Filed: August 17, 2010
    Publication date: February 17, 2011
    Applicant: UT Battelle, LLC
    Inventors: Stephen Jesse, Sergei V. Kalinin, Maxim P. Nikiforov
  • Publication number: 20110004967
    Abstract: Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation).
    Type: Application
    Filed: June 2, 2010
    Publication date: January 6, 2011
    Applicant: UT-Battelle, LLC
    Inventors: Stephen Jesse, Sergei V. Kalinin
  • Patent number: 7775086
    Abstract: Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation).
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: August 17, 2010
    Assignee: UT-Battelle, LLC
    Inventors: Stephen Jesse, Sergei V. Kalinin
  • Publication number: 20100011471
    Abstract: Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation).
    Type: Application
    Filed: September 1, 2006
    Publication date: January 14, 2010
    Inventors: Stephen Jesse, Sergei V. Kalinin
  • Patent number: 7491934
    Abstract: Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: February 17, 2009
    Assignee: UT-Battelle, LLC
    Inventors: Stephen Jesse, David B. Geohegan, Michael Guillorn
  • Patent number: D580951
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: November 18, 2008
    Assignee: SanDisk Corporation
    Inventors: Derek T. Niizawa, Jennifer J. Lee, Matthew J. Schoenholz, Eric R. Freedman, Stephen Jesse Hall, Jr.