Patents by Inventor Stephen K. Ferguson

Stephen K. Ferguson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10823985
    Abstract: The present disclosure relates to optical switching devices and switch modules that are designed for long-term security monitoring of high-value infrastructure access entry points. Embodiments in accordance with the present disclosure include optical switches based on fiber-Bragg gratings whose operating wavelengths are based on the presence or absence of magnetic coupling between an embedded permanent magnet and an external element. By monitoring the spectral position of the operating wavelengths and/or the magnitude of a light signal at the operating wavelengths, the state of the magnetic coupling can be determined and used as an indicator of whether the security switch has been actuated.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: November 3, 2020
    Assignee: LUNA INNOVATIONS INCORPORATED
    Inventor: Stephen K. Ferguson
  • Publication number: 20190258092
    Abstract: The present disclosure relates to optical switching devices and switch modules that are designed for long-term security monitoring of high-value infrastructure access entry points. Embodiments in accordance with the present disclosure include optical switches based on fiber-Bragg gratings whose operating wavelengths are based on the presence or absence of magnetic coupling between an embedded permanent magnet and an external element. By monitoring the spectral position of the operating wavelengths and/or the magnitude of a light signal at the operating wavelengths, the state of the magnetic coupling can be determined and used as an indicator of whether the security switch has been actuated.
    Type: Application
    Filed: May 2, 2019
    Publication date: August 22, 2019
    Inventor: Stephen K. FERGUSON
  • Patent number: 10324316
    Abstract: The present disclosure relates to optical switching devices and switch modules that are designed for long-term security monitoring of high-value infrastructure access entry points. Embodiments in accordance with the present disclosure include optical switches based on fiber-Bragg gratings whose operating wavelengths are based on the presence or absence of magnetic coupling between an embedded permanent magnet and an external element. By monitoring the spectral position of the operating wavelengths and/or the magnitude of a light signal at the operating wavelengths, the state of the magnetic coupling can be determined and used as an indicator of whether the security switch has been actuated.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: June 18, 2019
    Assignee: LUNA INNOVATIONS INCORPORATED
    Inventor: Stephen K. Ferguson
  • Publication number: 20190056607
    Abstract: The present disclosure relates to optical switching devices and switch modules that are designed for long-term security monitoring of high-value infrastructure access entry points. Embodiments in accordance with the present disclosure include optical switches based on fiber-Bragg gratings whose operating wavelengths are based on the presence or absence of magnetic coupling between an embedded permanent magnet and an external element. By monitoring the spectral position of the operating wavelengths and/or the magnitude of a light signal at the operating wavelengths, the state of the magnetic coupling can be determined and used as an indicator of whether the security switch has been actuated.
    Type: Application
    Filed: August 21, 2018
    Publication date: February 21, 2019
    Inventor: Stephen K. FERGUSON
  • Patent number: 7856888
    Abstract: The current invention relates to optical gages designed to measure strain on the surface of a test specimen. The gages of this invention is designed to be installed and used in a manner similar to conventional electronic foil strain gages, but to have the advantages of an all-optical gage. The gage of this invention is constructed to allow surface strain on the test specimen to be transferred to a length of optical fiber containing a fiber Bragg grating (FBG). As strain is applied to the fiber, the optical spectrum center wavelength reflected by the Bragg grating shifts in wavelength. This shift in wavelength can be converted directly to units of strain. The current invention provides a gage carrier design for use with fiber optic strain sensors comprising one or more FBGs which provide the benefits of a carrier for ease of handling and mounting without degrading gage performance.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: December 28, 2010
    Assignee: Micron Optics Inc.
    Inventor: Stephen K. Ferguson
  • Publication number: 20090126501
    Abstract: The current invention relates to optical gages designed to measure strain on the surface of a test specimen. The gages of this invention is designed to be installed and used in a manner similar to conventional electronic foil strain gages, but to have the advantages of an all-optical gage. The gage of this invention is constructed to allow surface strain on the test specimen to be transferred to a length of optical fiber containing a fiber Bragg grating (FBG). As strain is applied to the fiber, the optical spectrum center wavelength reflected by the Bragg grating shifts in wavelength. This shift in wavelength can be converted directly to units of strain. The current invention provides a gage carrier design for use with fiber optic strain sensors comprising one or more FBGs which provide the benefits of a carrier for ease of handling and mounting without degrading gage performance.
    Type: Application
    Filed: November 15, 2007
    Publication date: May 21, 2009
    Inventor: Stephen K. Ferguson
  • Patent number: 7063466
    Abstract: The invention relates generally to optical interference filters and interferometers. Methods, devices and device components for fiber Fabry-Perot (FFP) filters and ferrule holders are provided. The invention provides ferrule holders for FFP filters capable of good radial and longitudinal alignment. An exemplary ferrule holder of the present invention is capable of substantially constraining the motion of a pair of ferrules in all directions except a direction parallel to the longitudinal axis, thereby allowing the resonance cavity of a FFP filter to be adjusted while maintaining good radial alignment. The invention further provides temperature compensated ferrule holders and FFP filters that are stable with respect to wavelength drift over a useful range of device operating conditions. In addition, the present invention provides ferrule holders and FFP filters which are particularly useful for monitoring ambient conditions and measuring physical properties and mechanical phenomena.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: June 20, 2006
    Assignee: Micron Optics, Inc.
    Inventor: Stephen K. Ferguson
  • Patent number: 6904206
    Abstract: Improved fiber Fabry-Perot (FFP) filter configurations are provided in which at least one of the mirror-ended fiber ends forming the FFP has a concave fiber core end. The mirror at that fiber core end is thus concave. The invention provides waferless FFP configurations in which the FFP cavity is an air-gap cavity formed by two highly reflective dielectric mirrors deposited directly on optical fiber ends. The air gap cavity can be tuned using various methods to tune the filter. Use of a concave mirror at the fiber core enables filters with improved performance characteristics: including very wide FSR (>12000 GHz), very high finesse (>5,000), and high glitch-free dynamic range (GFDR) (>40 dB). The invention also provides improved wafer-based FFP fixed and tunable filters that incorporate a concave mirror at a fiber core forming the FFP cavity and a fiber (SMF) waveguide within the cavity.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: June 7, 2005
    Assignee: Micron Optics, Inc.
    Inventors: Yufei Bao, Stephen K. Ferguson, Donald Q. Snyder
  • Publication number: 20040247244
    Abstract: Improved fiber Fabry-Perot (FFP) filter configurations are provided in which at least one of the mirror-ended fiber ends forming the FFP has a concave fiber core end. The mirror at that fiber core end is thus concave. The invention provides waterless FFP configurations in which the FFP cavity is an air-gap cavity formed by two highly reflective dielectric mirrors deposited directly on optical fiber ends. The air gap cavity can be tuned using various methods to tune the filter. Use of a concave mirror at the fiber core enables filters with improved performance characteristics: including very wide FSR (>12000 GHz), very high finesse (>5,000), and high glitch-free dynamic range (GFDR) (>40 dB). The invention also provides improved wafer-based FFP fixed and tunable filters that incorporate a concave mirror at a fiber core forming the FFP cavity and a fiber (SMF) waveguide within the cavity.
    Type: Application
    Filed: October 15, 2003
    Publication date: December 9, 2004
    Inventors: Yufei Bao, Stephen K. Ferguson, Donald Q. Snyder
  • Publication number: 20040151438
    Abstract: The invention relates generally to optical interference filters and interferometers. Methods, devices and device components for fiber Fabry-Perot (FFP) filters and ferrule holders are provided. The invention provides ferrule holders for FFP filters capable of good radial and longitudinal alignment. An exemplary ferrule holder of the present invention is capable of substantially constraining the motion of a pair of ferrules in all directions except a direction parallel to the longitudinal axis, thereby allowing the resonance cavity of a FFP filter to be adjusted while maintaining good radial alignment. The invention further provides temperature compensated ferrule holders and FFP filters that are stable with respect to wavelength drift over a useful range of device operating conditions. In addition, the present invention provides ferrule holders and FFP filters which are particularly useful for monitoring ambient conditions and measuring physical properties and mechanical phenomena.
    Type: Application
    Filed: December 18, 2003
    Publication date: August 5, 2004
    Inventor: Stephen K. Ferguson
  • Patent number: 5076881
    Abstract: A group of loose cabled optical fibers (32--32) destined to be terminated by a multi-fiber connector device is first fabricated into an optical fiber ribbon (30). The optical fibers of the group are threaded through portions of an organizing shuttle (20) and brought into planar juxtaposition with each other by the cooperation of a curved surface (112) and a burnishing bar assembly (98). As the organizing shuttle is caused to be moved along a track (42), the burnishing bar assembly causes the planar array of fibers to be embedded into an adhesive coating of a first binding tape (34) which is secured along the length of the track. In a preferred embodiment, a second tape (35) is applied over the fibers and the first tape. The ribbon is trimmed of excess longitudinal side portions of the binding tapes to provide a ribbon of desired width.
    Type: Grant
    Filed: October 1, 1990
    Date of Patent: December 31, 1991
    Assignee: AT&T Bell Laboratories
    Inventor: Stephen K. Ferguson
  • Patent number: 4980007
    Abstract: A group of loose cabled optical fibers (32-32) destined to be terminated by a multi-fiber connector device is first fabricated into an optical fiber ribbon (30). The optical fibers of the group are threaded through portions of an organizing shuttle (20) and brought into planar juxtaposition with each other by the cooperation of a curved surface (112) and a burnishing bar assembly (98). As the organinzing shuttle is caused to be moved along a track (42), the burnishing bar assembly causes the planar array of fibers to be embedded into an adhesive coating of a first binding tape (34) which is secured along the length of the track. In a preferred embodiment, a second tape (35) is applied over the fibers and the first tape. The ribbon is trimmed of excess longitudinal side portions of the binding tapes to provide a ribbon of desired width.
    Type: Grant
    Filed: July 14, 1989
    Date of Patent: December 25, 1990
    Assignee: AT&T Bell Laboratories
    Inventor: Stephen K. Ferguson