Patents by Inventor Stephen Kornachuk

Stephen Kornachuk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170365548
    Abstract: A plurality of regular wires are formed within a given chip level, each having a linear-shape with a length extending in a first direction and a width extending in a second direction perpendicular to the first direction. The plurality of regular wires are positioned according to a fixed pitch such that a distance as measured in the second direction between lengthwise centerlines of any two regular wires is an integer multiple of the fixed pitch. At least one irregular wire is formed within the given chip level and within a region bounded by the plurality of regular wires. Each irregular wire has a linear-shape with a length extending in the first direction and a width extending in the second direction. A distance as measured in the second direction between lengthwise centerlines of any irregular wire and any regular wire is not equal to an integer multiple of the fixed pitch.
    Type: Application
    Filed: September 5, 2017
    Publication date: December 21, 2017
    Inventors: Stephen Kornachuk, James Mali, Carole Lambert, Scott T. Becker, Brian Reed
  • Patent number: 9754878
    Abstract: A plurality of regular wires are formed within a given chip level, each having a linear-shape with a length extending in a first direction and a width extending in a second direction perpendicular to the first direction. The plurality of regular wires are positioned according to a fixed pitch such that a distance as measured in the second direction between lengthwise centerlines of any two regular wires is an integer multiple of the fixed pitch. At least one irregular wire is formed within the given chip level and within a region bounded by the plurality of regular wires. Each irregular wire has a linear-shape with a length extending in the first direction and a width extending in the second direction. A distance as measured in the second direction between lengthwise centerlines of any irregular wire and any regular wire is not equal to an integer multiple of the fixed pitch.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: September 5, 2017
    Assignee: Tela Innovations, Inc.
    Inventors: Stephen Kornachuk, James Mali, Carole Lambert, Scott T. Becker, Brian Reed
  • Publication number: 20170098602
    Abstract: A global placement grating (GPG) is defined for a chip level to include a set of parallel and evenly spaced virtual lines. At least one virtual line of the GPG is positioned to intersect each contact that interfaces with the chip level. A number of subgratings are defined. Each subgrating is a set of equally spaced virtual lines of the GPG that supports a common layout shape run length thereon. The layout for the chip level is partitioned into subgrating regions. Each subgrating region has any one of the defined subgratings allocated thereto. Layout shapes placed within a given subgrating region in the chip level are placed in accordance with the subgrating allocated to the given subgrating region. Non-standard layout shape spacings at subgrating region boundaries can be mitigated by layout shape stretching, layout shape insertion, and/or subresolution shape insertion, or can be allowed to exist in the final layout.
    Type: Application
    Filed: December 19, 2016
    Publication date: April 6, 2017
    Inventors: Stephen Kornachuk, Jim Mali, Carole Lambert, Scott T. Becker
  • Patent number: 9530734
    Abstract: A global placement grating (GPG) is defined for a chip level to include a set of parallel and evenly spaced virtual lines. At least one virtual line of the GPG is positioned to intersect each contact that interfaces with the chip level. A number of subgratings are defined. Each subgrating is a set of equally spaced virtual lines of the GPG that supports a common layout shape run length thereon. The layout for the chip level is partitioned into subgrating regions. Each subgrating region has any one of the defined subgratings allocated thereto. Layout shapes placed within a given subgrating region in the chip level are placed in accordance with the subgrating allocated to the given subgrating region. Non-standard layout shape spacings at subgrating region boundaries can be mitigated by layout shape stretching, layout shape insertion, and/or subresolution shape insertion, or can be allowed to exist in the final layout.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: December 27, 2016
    Assignee: Tela Innovations, Inc.
    Inventors: Stephen Kornachuk, Jim Mali, Carole Lambert, Scott T. Becker
  • Publication number: 20160079159
    Abstract: A global placement grating (GPG) is defined for a chip level to include a set of parallel and evenly spaced virtual lines. At least one virtual line of the GPG is positioned to intersect each contact that interfaces with the chip level. A number of subgratings are defined. Each subgrating is a set of equally spaced virtual lines of the GPG that supports a common layout shape run length thereon. The layout for the chip level is partitioned into subgrating regions. Each subgrating region has any one of the defined subgratings allocated thereto. Layout shapes placed within a given subgrating region in the chip level are placed in accordance with the subgrating allocated to the given subgrating region. Non-standard layout shape spacings at subgrating region boundaries can be mitigated by layout shape stretching, layout shape insertion, and/or subresolution shape insertion, or can be allowed to exist in the final layout.
    Type: Application
    Filed: November 23, 2015
    Publication date: March 17, 2016
    Inventors: Stephen Kornachuk, Jim Mali, Carole Lambert, Scott T. Becker
  • Patent number: 9202779
    Abstract: A global placement grating (GPG) is defined for a chip level to include a set of parallel and evenly spaced virtual lines. At least one virtual line of the GPG is positioned to intersect each contact that interfaces with the chip level. A number of subgratings are defined. Each subgrating is a set of equally spaced virtual lines of the GPG that supports a common layout shape run length thereon. The layout for the chip level is partitioned into subgrating regions. Each subgrating region has any one of the defined subgratings allocated thereto. Layout shapes placed within a given subgrating region in the chip level are placed in accordance with the subgrating allocated to the given subgrating region. Non-standard layout shape spacings at subgrating region boundaries can be mitigated by layout shape stretching, layout shape insertion, and/or subresolution shape insertion, or can be allowed to exist in the final layout.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: December 1, 2015
    Assignee: Tela Innovations, Inc.
    Inventors: Stephen Kornachuk, Jim Mali, Carole Lambert, Scott T. Becker
  • Publication number: 20140197543
    Abstract: A global placement grating (GPG) is defined for a chip level to include a set of parallel and evenly spaced virtual lines. At least one virtual line of the GPG is positioned to intersect each contact that interfaces with the chip level. A number of subgratings are defined. Each subgrating is a set of equally spaced virtual lines of the GPG that supports a common layout shape run length thereon. The layout for the chip level is partitioned into subgrating regions. Each subgrating region has any one of the defined subgratings allocated thereto. Layout shapes placed within a given subgrating region in the chip level are placed in accordance with the subgrating allocated to the given subgrating region. Non-standard layout shape spacings at subgrating region boundaries can be mitigated by layout shape stretching, layout shape insertion, and/or subresolution shape insertion, or can be allowed to exist in the final layout.
    Type: Application
    Filed: March 17, 2014
    Publication date: July 17, 2014
    Applicant: Tela Innovations, Inc.
    Inventors: Stephen Kornachuk, Jim Mali, Carole Lambert, Scott T. Becker
  • Patent number: 8701071
    Abstract: A global placement grating (GPG) is defined for a chip level to include a set of parallel and evenly spaced virtual lines. At least one virtual line of the GPG is positioned to intersect each contact that interfaces with the chip level. A number of subgratings are defined. Each subgrating is a set of equally spaced virtual lines of the GPG that supports a common layout shape run length thereon. The layout for the chip level is partitioned into subgrating regions. Each subgrating region has any one of the defined subgratings allocated thereto. Layout shapes placed within a given subgrating region in the chip level are placed in accordance with the subgrating allocated to the given subgrating region. Non-standard layout shape spacings at subgrating region boundaries can be mitigated by layout shape stretching, layout shape insertion, and/or subresolution shape insertion, or can be allowed to exist in the final layout.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: April 15, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Stephen Kornachuk, Jim Mali, Carole Lambert, Scott T. Becker
  • Publication number: 20130256898
    Abstract: A plurality of regular wires are formed within a given chip level, each having a linear-shape with a length extending in a first direction and a width extending in a second direction perpendicular to the first direction. The plurality of regular wires are positioned according to a fixed pitch such that a distance as measured in the second direction between lengthwise centerlines of any two regular wires is an integer multiple of the fixed pitch. At least one irregular wire is formed within the given chip level and within a region bounded by the plurality of regular wires. Each irregular wire has a linear-shape with a length extending in the first direction and a width extending in the second direction. A distance as measured in the second direction between lengthwise centerlines of any irregular wire and any regular wire is not equal to an integer multiple of the fixed pitch.
    Type: Application
    Filed: May 20, 2013
    Publication date: October 3, 2013
    Applicant: Tela Innovations, Inc.
    Inventors: Stephen Kornachuk, James Mali, Carole Lambert, Scott T. Becker, Brian Reed
  • Publication number: 20130254732
    Abstract: A global placement grating (GPG) is defined for a chip level to include a set of parallel and evenly spaced virtual lines. At least one virtual line of the GPG is positioned to intersect each contact that interfaces with the chip level. A number of subgratings are defined. Each subgrating is a set of equally spaced virtual lines of the GPG that supports a common layout shape run length thereon. The layout for the chip level is partitioned into subgrating regions. Each subgrating region has any one of the defined subgratings allocated thereto. Layout shapes placed within a given subgrating region in the chip level are placed in accordance with the subgrating allocated to the given subgrating region. Non-standard layout shape spacings at subgrating region boundaries can be mitigated by layout shape stretching, layout shape insertion, and/or subresolution shape insertion, or can be allowed to exist in the final layout.
    Type: Application
    Filed: May 17, 2013
    Publication date: September 26, 2013
    Applicant: Tela Innovations, Inc.
    Inventors: Stephen Kornachuk, Jim Mali, Carole Lambert, Scott T. Becker
  • Patent number: 8453094
    Abstract: A global placement grating (GPG) is defined for a chip level to include a set of parallel and evenly spaced virtual lines. At least one virtual line of the GPG is positioned to intersect each contact that interfaces with the chip level. A number of subgratings are defined. Each subgrating is a set of equally spaced virtual lines of the GPG that supports a common layout shape run length thereon. The layout for the chip level is partitioned into subgrating regions. Each subgrating region has any one of the defined subgratings allocated thereto. Layout shapes placed within a given subgrating region in the chip level are placed in accordance with the subgrating allocated to the given subgrating region. Non-standard layout shape spacings at subgrating region boundaries can be mitigated by layout shape stretching, layout shape insertion, and/or subresolution shape insertion, or can be allowed to exist in the final layout.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: May 28, 2013
    Assignee: Tela Innovations, Inc.
    Inventors: Stephen Kornachuk, Jim Mali, Carole Lambert, Scott T. Becker
  • Patent number: 8448102
    Abstract: Within a dynamic array architecture, an irregular wire layout region within a portion of a chip level layout is bracketed by placing first and second regular wire layout shapes on a first and second sides, respectively, of the irregular wire layout region. One or more irregular wire layout shapes are placed within the irregular wire layout region. A first edge spacing is maintained between the first regular wire layout shape and a first outer irregular wire layout shape within the irregular wire layout region nearest to the first regular wire layout shape. A second edge spacing is maintained between the second regular wire layout shape and a second outer irregular wire layout shape within the irregular wire layout region nearest to the second regular wire layout shape. The first and second edge spacings are defined to optimize lithography of the regular and irregular wire layout shapes.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: May 21, 2013
    Assignee: Tela Innovations, Inc.
    Inventors: Stephen Kornachuk, Carole Lambert, James Mali, Brian Reed, Scott T. Becker
  • Patent number: 8225261
    Abstract: First and second virtual grates are defined as respective sets of parallel virtual lines extending across a layout area in first and second perpendicular directions, respectively. The virtual lines of the first and second virtual grates correspond to placement locations for layout features in lower and higher chip levels, respectively. Each intersection point between virtual lines of the first and second virtual grates is a gridpoint within a vertical connection placement grid. Vertical connection structures are placed at a number of gridpoints within the vertical connection placement grid so as to provide electrical connectivity between layout features in the lower and higher chip levels. The vertical connection structures are placed so as to minimize a number of different spacing sizes between neighboring vertical connection structures across the vertical connection placement grid, while simultaneously minimizing to an extent possible layout area size.
    Type: Grant
    Filed: March 7, 2009
    Date of Patent: July 17, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Joseph Hong, Stephen Kornachuk, Scott T. Becker
  • Publication number: 20110156167
    Abstract: A circuit is defined to operate in accordance with a common control signal. The circuit includes a plurality of transistors that have respective timing margins relative to the common control signal. Some of the plurality of transistors are defined differently from another of the plurality of transistors with regard to either transistor channel width, transistor channel length, transistor threshold voltage, or a combination thereof. The different definition of any given one of the plurality of transistors causes a reduction of either transistor power consumption, transistor current leakage, or a combination thereof, in exchange for a corresponding reduction in timing margin while maintaining a positive timing margin.
    Type: Application
    Filed: December 29, 2010
    Publication date: June 30, 2011
    Applicant: Tela Innovations, Inc.
    Inventor: Stephen Kornachuk
  • Publication number: 20090300575
    Abstract: Within a dynamic array architecture, an irregular wire layout region within a portion of a chip level layout is bracketed by placing first and second regular wire layout shapes on a first and second sides, respectively, of the irregular wire layout region. One or more irregular wire layout shapes are placed within the irregular wire layout region. A first edge spacing is maintained between the first regular wire layout shape and a first outer irregular wire layout shape within the irregular wire layout region nearest to the first regular wire layout shape. A second edge spacing is maintained between the second regular wire layout shape and a second outer irregular wire layout shape within the irregular wire layout region nearest to the second regular wire layout shape. The first and second edge spacings are defined to optimize lithography of the regular and irregular wire layout shapes.
    Type: Application
    Filed: June 9, 2009
    Publication date: December 3, 2009
    Inventors: Stephen Kornachuk, Carole Lambert, James Mali, Brian Reed
  • Publication number: 20090228857
    Abstract: A global placement grating (GPG) is defined for a chip level to include a set of parallel and evenly spaced virtual lines. At least one virtual line of the GPG is positioned to intersect each contact that interfaces with the chip level. A number of subgratings are defined. Each subgrating is a set of equally spaced virtual lines of the GPG that supports a common layout shape run length thereon. The layout for the chip level is partitioned into subgrating regions. Each subgrating region has any one of the defined subgratings allocated thereto. Layout shapes placed within a given subgrating region in the chip level are placed in accordance with the subgrating allocated to the given subgrating region. Non-standard layout shape spacings at subgrating region boundaries can be mitigated by layout shape stretching, layout shape insertion, and/or subresolution shape insertion, or can be allowed to exist in the final layout.
    Type: Application
    Filed: January 30, 2009
    Publication date: September 10, 2009
    Applicant: Tela Innovations, Inc.
    Inventors: Stephen Kornachuk, Jim Mali, Carole Lambert
  • Publication number: 20090228853
    Abstract: First and second virtual grates are defined as respective sets of parallel virtual lines extending across a layout area in first and second perpendicular directions, respectively. The virtual lines of the first and second virtual grates correspond to placement locations for layout features in lower and higher chip levels, respectively. Each intersection point between virtual lines of the first and second virtual grates is a gridpoint within a vertical connection placement grid. Vertical connection structures are placed at a number of gridpoints within the vertical connection placement grid so as to provide electrical connectivity between layout features in the lower and higher chip levels. The vertical connection structures are placed so as to minimize a number of different spacing sizes between neighboring vertical connection structures across the vertical connection placement grid, while simultaneously minimizing to an extent possible layout area size.
    Type: Application
    Filed: March 7, 2009
    Publication date: September 10, 2009
    Applicant: Tela Innovations, Inc.
    Inventors: Joseph Hong, Stephen Kornachuk
  • Patent number: 7586800
    Abstract: A computer memory includes a primary self-timing signal path defined by a model wordline signal path and a model bitline signal pair path. The primary self-timing signal path is defined to generate and transmit a model bitline signal pair. The computer memory also includes a control block defined to receive the model bitline signal pair from the primary self-timing signal path. The control block is defined to sense when a distinctive differential exists between the signals of the model bitline signal pair. The control block is further defined to generate and transmit a sense enable signal to a memory core upon sensing the distinctive differential between the signals of the model bitline signal pair.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: September 8, 2009
    Assignee: Tela Innovations, Inc.
    Inventor: Stephen Kornachuk
  • Patent number: 7577049
    Abstract: A computer memory includes a sense enable control module for generating a sense enable signal for a memory core. The sense enable control module includes an active side for transmitting the sense enable signal for the memory core, and a calibration side for determining when the sense enable signal is to be transmitted by the active side. Both the active side and the calibration side are defined to receive a timing signal. The active side is defined to transmit a delayed version of the timing signal as the sense enable signal for the memory core. The calibration side is defined to adjust the delay amount associated with the delayed version of the timing signal to be transmitted by the active side based on a determined sufficiency of the delay amount.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: August 18, 2009
    Assignee: Tela Innovations, Inc.
    Inventor: Stephen Kornachuk