Patents by Inventor Stephen L. James

Stephen L. James has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8716847
    Abstract: Flow diverting structures for preferentially impeding, redirecting or both impeding and redirecting the flow of flowable encapsulant material, such as molding compound, proximate a selected surface or surfaces of a semiconductor die or dice during encapsulation are disclosed. Flow diverting structures may be included in or associated with one or more portions of a lead frame, such as a paddle, tie bars, or lead fingers. Flow diverting structures may also be inserted into a mold in association with semiconductor dice carried on non-lead frame substrates, such as interposers and circuit boards, to preferentially impede, redirect or both impede and redirect the flow of molding compound flowing between and over the semiconductor dice.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: May 6, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Stephen L. James
  • Patent number: 8399966
    Abstract: Flow diverting structures for preferentially impeding, redirecting or both impeding and redirecting the flow of flowable encapsulant material, such as molding compound, proximate a selected surface or surfaces of a semiconductor die or dice during encapsulation are disclosed. Flow diverting structures may be included in or associated with one or more portions of a lead frame, such as a paddle, tie bars, or lead fingers. Flow diverting structures may also be inserted into a mold in association with semiconductor dice carried on non-lead frame substrates, such as interposers and circuit boards, to preferentially impede, redirect or both impede and redirect the flow of molding compound flowing between and over the semiconductor dice.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: March 19, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Stephen L. James
  • Publication number: 20120235286
    Abstract: Flow diverting structures for preferentially impeding, redirecting or both impeding and redirecting the flow of flowable encapsulant material, such as molding compound, proximate a selected surface or surfaces of a semiconductor die or dice during encapsulation are disclosed. Flow diverting structures may be included in or associated with one or more portions of a lead frame, such as a paddle, tie bars, or lead fingers. Flow diverting structures may also be inserted into a mold in association with semiconductor dice carried on non-lead frame substrates, such as interposers and circuit boards, to preferentially impede, redirect or both impede and redirect the flow of molding compound flowing between and over the semiconductor dice.
    Type: Application
    Filed: May 31, 2012
    Publication date: September 20, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Stephen L. James
  • Patent number: 8207599
    Abstract: Flow diverting structures for preferentially impeding, redirecting or both impeding and redirecting the flow of flowable encapsulant material, such as molding compound, proximate a selected surface or surfaces of a semiconductor die or dice during encapsulation are disclosed. Flow diverting structures may be included in or associated with one or more portions of a lead frame, such as a paddle, tie bars, or lead fingers. Flow diverting structures may also be inserted into a mold in association with semiconductor dice carried on non-lead frame substrates, such as interposers and circuit boards, to preferentially impede, redirect or both impede and redirect the flow of molding compound flowing between and over the semiconductor dice.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: June 26, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Stephen L. James
  • Publication number: 20110163427
    Abstract: Flow diverting structures for preferentially impeding, redirecting or both impeding and redirecting the flow of flowable encapsulant material, such as molding compound, proximate a selected surface or surfaces of a semiconductor die or dice during encapsulation are disclosed. Flow diverting structures may be included in or associated with one or more portions of a lead frame, such as a paddle, tie bars, or lead fingers. Flow diverting structures may also be inserted into a mold in association with semiconductor dice carried on non-lead frame substrates, such as interposers and circuit boards, to preferentially impede, redirect or both impede and redirect the flow of molding compound flowing between and over the semiconductor dice.
    Type: Application
    Filed: March 15, 2011
    Publication date: July 7, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Stephen L. James
  • Patent number: 7927923
    Abstract: Flow diverting structures for preferentially impeding, redirecting or both impeding and redirecting the flow of flowable encapsulant material, such as molding compound, proximate a selected surface or surfaces of a semiconductor die or dice during encapsulation are disclosed. Flow diverting structures may be included in or associated with one or more portions of a lead frame, such as a paddle, tie bars, or lead fingers. Flow diverting structures may also be inserted into a mold in association with semiconductor dice carried on non-lead frame substrates, such as interposers and circuit boards, to preferentially impede, redirect or both impede and redirect the flow of molding compound flowing between and over the semiconductor dice.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: April 19, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Stephen L. James
  • Patent number: 7501309
    Abstract: A semiconductor device, semiconductor die package, mold tooling, and methods of fabricating the device and packages are provided. In one embodiment, the semiconductor device comprises a pair of semiconductor dies mounted on opposing sides of a flexible tape substrate, the outer surfaces of the dies having one or more standoffs disposed thereon. The standoffs can be brought into contact with an inner surface of the mold plates of a mold tooling when the device is positioned between the mold plates to maintain the flexible tape substrate in a centralized position within a mold chamber and inhibit the tape from bending as a molding compound flows into the chamber during encapsulation.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: March 10, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Stephen L James, Vernon M Williams
  • Patent number: 7462510
    Abstract: A semiconductor device, semiconductor die package, mold tooling, and methods of fabricating the device and packages are provided. In one embodiment, the semiconductor device comprises a pair of semiconductor dies mounted on opposing sides of a flexible tape substrate, the outer surfaces of the dies having one or more standoffs disposed thereon. The standoffs can be brought into contact with an inner surface of the mold plates of a mold tooling when the device is positioned between the mold plates to maintain the flexible tape substrate in a centralized position within a mold chamber and inhibit the tape from bending as a molding compound flows into the chamber during encapsulation.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: December 9, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Stephen L James, Vernon M Williams
  • Patent number: 7459797
    Abstract: A semiconductor device, semiconductor die package, mold tooling, and methods of fabricating the device and packages are provided. In one embodiment, the semiconductor device comprises a pair of semiconductor dies mounted on opposing sides of a flexible tape substrate, the outer surfaces of the dies having one or more standoffs disposed thereon. The standoffs can be brought into contact with an inner surface of the mold plates of a mold tooling when the device is positioned between the mold plates to maintain the flexible tape substrate in a centralized position within a mold chamber and inhibit the tape from bending as a molding compound flows into the chamber during encapsulation.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: December 2, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Stephen L James, Vernon M Williams
  • Publication number: 20080073758
    Abstract: Flow diverting structures for preferentially impeding, redirecting or both impeding and redirecting the flow of flowable encapsulant material, such as molding compound, proximate a selected surface or surfaces of a semiconductor die or dice during encapsulation are disclosed. Flow diverting structures may be included in or associated with one or more portions of a lead frame, such as the paddle, tie bars, or lead fingers. Flow diverting structures may also be inserted into a mold in association with semiconductor dice carried on non-lead frame substrates, such as interposers and circuit boards, to preferentially impede, redirect or both impede and redirect the flow of molding compound flowing between and over the semiconductor dice.
    Type: Application
    Filed: September 25, 2006
    Publication date: March 27, 2008
    Inventor: Stephen L. James
  • Patent number: 7323767
    Abstract: A semiconductor device, semiconductor die package, mold tooling, and methods of fabricating the device and packages are provided. In one embodiment, the semiconductor device comprises a pair of semiconductor dies mounted on opposing sides of a flexible tape substrate, the outer surfaces of the dies having one or more standoffs disposed thereon. The standoffs can be brought into contact with an inner surface of the mold plates of a mold tooling when the device is positioned between the mold plates to maintain the flexible tape substrate in a centralized position within a mold chamber and inhibit the tape from bending as a molding compound flows into the chamber during encapsulation.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: January 29, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Stephen L. James, Vernon M. Williams
  • Patent number: 7271037
    Abstract: A leadframe comprising a downset formed adjacent to an edge of the leadframe so as to direct the molding compound to flow evenly inside the mold cavity. The downset has an upward slope extending from the edge of the frame and levels off with the rest of the frame at a first transition point. The upward slope facilitates the upward flow of the molding compound entering from a bottom gate. Likewise, the leadframe also directs flow in a top gated mold by reversing the orientation of the leadframe or by forming a reverse downset on the leadframe.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: September 18, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Stephen L. James
  • Patent number: 7271036
    Abstract: A leadframe comprising a downset formed adjacent to an edge of the leadframe so as to direct the molding compound to flow evenly inside the mold cavity. The downset has an upward slope extending from the edge of the frame and levels off with the rest of the frame at a first transition point. The upward slope facilitates the upward flow of the molding compound entering from a bottom gate. Likewise, the leadframe also directs flow in a top gated mold by reversing the orientation of the leadframe or by forming a reverse downset on the leadframe.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: September 18, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Stephen L. James
  • Patent number: 7247927
    Abstract: A leadframe comprising a downset formed adjacent to an edge of the leadframe so as to direct the molding compound to flow evenly inside the mold cavity. The downset has an upward slope extending from the edge of the frame and levels off with the rest of the frame at a first transition point. The upward slope facilitates the upward flow of the molding compound entering from a bottom gate. Likewise, the leadframe also directs flow in a top gated mold by reversing the orientation of the leadframe or by forming a reverse downset on the leadframe.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: July 24, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Stephen L. James
  • Patent number: 7053467
    Abstract: A leadframe comprising a downset formed adjacent to an edge of the leadframe so as to direct the molding compound to flow evenly inside the mold cavity. The downset has an upward slope extending from the edge of the frame and levels off with the rest of the frame at a first transition point. The upward slope facilitates the upward flow of the molding compound entering from a bottom gate. Likewise, the leadframe also directs flow in a top gated mold by reversing the orientation of the leadframe or by forming a reverse downset on the leadframe.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: May 30, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Stephen L. James
  • Patent number: 7054161
    Abstract: A method and apparatus for attaching an integrated circuit die to a leadframe or substrate. More specifically, a patterned adhesive material is used to attach an integrated circuit die to a leadframe in an LOC package, or a substrate in a BOC package. The patterned adhesive may be a tape or any other suitable material for attaching an I/C to a substrate or leadframe. The adhesive patterns may be configured to form strips of adhesive material or may be a solid piece of material with apertures cut therethrough.
    Type: Grant
    Filed: April 19, 2000
    Date of Patent: May 30, 2006
    Inventor: Stephen L. James
  • Patent number: 7049685
    Abstract: Packaged microelectronic devices, interconnecting units for packaged microelectronic devices, and methods and apparatuses for packaging microelectronic devices with pressure release elements. In one aspect of the invention, a packaged microelectronic device includes a microelectronic die, an interconnecting unit coupled to the die, and a protective casing over the die. The interconnecting unit can have a substrate with a first side and a second side to which the die is attached, a plurality of contact elements operatively coupled to corresponding bond-pads on the die, and a plurality of ball-pads on the first side of the substrate electrically coupled to the contact elements. The protective casing can have at least a first cover encapsulating the die on the first side of the substrate. The packaged microelectronic device can also include a pressure relief element through at least a portion of the first cover and/or the substrate.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: May 23, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Stephen L. James, Chad A. Cobbley
  • Patent number: 6979595
    Abstract: Packaged microelectronic devices, interconnecting units for packaged microelectronic devices, and methods and apparatuses for packaging microelectronic devices with pressure release elements. In one aspect of the invention, a packaged microelectronic device includes a microelectronic die, an interconnecting unit coupled to the die, and a protective casing over the die. The interconnecting unit can have a substrate with a first side and a second side to which the die is attached, a plurality of contact elements operatively coupled to corresponding bond-pads on the die, and a plurality of ball-pads on the first side of the substrate electrically coupled to the contact elements. The protective casing can have at least a first cover encapsulating the die on the first side of the substrate. The packaged microelectronic device can also include a pressure relief element through at least a portion of the first cover and/or the substrate.
    Type: Grant
    Filed: August 24, 2000
    Date of Patent: December 27, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Stephen L. James, Chad A. Cobbley
  • Patent number: 6815835
    Abstract: An adhesive system and a method of adhesion for a ball grid array semi-conductor device package facilitate the encapsulation of a die attached to a circuit board. A material is added between a die and a circuit board tape, and is oriented perpendicular to a conventional two-piece rape system used to attach the die to the circuit board. The material, which is located across from a gate through which an encapsulation compound is injected to form a package, acts as a diversion dam. The material thereby enables the injected encapsulation compound to fill a wirebond slot last and avoid an overflow which might otherwise damage the ball grid array.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: November 9, 2004
    Assignee: Micron Technology Inc.
    Inventor: Stephen L. James
  • Publication number: 20040169292
    Abstract: A semiconductor device, semiconductor die package, mold tooling, and methods of fabricating the device and packages are provided. In one embodiment, the semiconductor device comprises a pair of semiconductor dies mounted on opposing sides of a flexible tape substrate, the outer surfaces of the dies having one or more standoffs disposed thereon. The standoffs can be brought into contact with an inner surface of the mold plates of a mold tooling when the device is positioned between the mold plates to maintain the flexible tape substrate in a centralized position within a mold chamber and inhibit the tape from bending as a molding compound flows into the chamber during encapsulation.
    Type: Application
    Filed: March 12, 2004
    Publication date: September 2, 2004
    Applicant: Micron Technology, Inc.
    Inventors: Stephen L. James, Vernon M. Williams