Patents by Inventor Stephen Lake

Stephen Lake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180150033
    Abstract: Wearable electronic devices that employ one or more contact sensors (e.g., capacitive sensors and/or biometric sensors) are described. Contact sensors include electromyography sensors and/or capacitive touch sensors. Capacitive touch sensors include single-frequency capacitive touch sensors, recently-proposed swept frequency capacitive touch sensors, and a generalized version of swept frequency capacitive touch sensors referred to as multi-frequency capacitive touch sensors. The contact sensors are integrated into various devices, including generic watchstraps that may be substituted for the existing watchstrap in any wristwatch design, generic watch back-plates that may be substituted for the existing back-plate in any wristwatch design, and wearable electromyography devices that provide gesture-based control in a human-electronics interface.
    Type: Application
    Filed: January 29, 2018
    Publication date: May 31, 2018
    Inventors: Stephen Lake, Matthew Bailey
  • Publication number: 20180067553
    Abstract: Systems, articles, and methods for improved capacitive electromyography (“EMG”) sensors are described. The improved capacitive EMG sensors include one or more sensor electrode(s) that is/are coated with a protective barrier formed of a material that has a relative permittivity ?r of about 10 or more. The protective barrier shields the sensor electrode(s) from moisture, sweat, skin oils, etc. while advantageously contributing to a large capacitance between the sensor electrode(s) and the user's body. In this way, the improved capacitive EMG sensors provide enhanced robustness against variations in skin and/or environmental conditions. Such improved capacitive EMG sensors are particularly well-suited for use in wearable EMG devices that may be worn by a user for an extended period of time and/or under a variety of skin and/or environmental conditions. A wearable EMG device that provides a component of a human-electronics interface and incorporates such improved capacitive EMG sensors is described.
    Type: Application
    Filed: October 31, 2017
    Publication date: March 8, 2018
    Inventors: Cezar Morun, Stephen Lake
  • Publication number: 20180064363
    Abstract: Systems, articles, and methods for surface electromyography (“EMG”) sensors that combine elements from traditional capacitive and resistive EMG sensors are described. For example, capacitive EMG sensors that are adapted to resistively couple to a user's skin are described. Resistive coupling between a sensor electrode and the user's skin is galvanically isolated from the sensor circuitry by a discrete component capacitor included downstream from the sensor electrode. The combination of a resistively coupled electrode and a discrete component capacitor provides the respective benefits of traditional resistive and capacitive (respectively) EMG sensor designs while mitigating respective drawbacks of each approach. A wearable EMG device that provides a component of a human-electronics interface and incorporates such capacitive EMG sensors is also described.
    Type: Application
    Filed: October 31, 2017
    Publication date: March 8, 2018
    Inventors: Cezar Morun, Stephen Lake
  • Publication number: 20170127834
    Abstract: A seating unit that includes a linkage mechanism adapted to adjust between closed, extended, and reclined positions is provided. The linkage mechanism includes a seat-mounting plate mounted to a footrest assembly, a back-mounting link and a rear bellcrank both rotatably coupled to the seat-mounting plate, an activator bar that controls a footrest drive link, and a linear actuator for carrying out automated adjustment of the linkage assembly. In operation, a stroke in a first phase of the linear actuator generates a torque on the activator bar. The footrest drive link converts the torque into a laterally-directed force that pushes the footrest assembly into the extended position. A stroke in the second phase acts to push the activator bar forward and translate the seat-mounting plate forward at a consistent inclination angle. The forward translation causes the rear bellcrank to rotate, thereby biasing the back-mounting link rearward into the reclined position.
    Type: Application
    Filed: July 12, 2016
    Publication date: May 11, 2017
    Inventors: GREGORY M. LAWSON, STEPHEN LAKE
  • Patent number: 9386857
    Abstract: A seating unit that includes a linkage mechanism adapted to adjust between closed, extended, and reclined positions is provided. The linkage mechanism includes a seat-mounting plate mounted to a footrest assembly, a back-mounting link and a rear bellcrank both rotatably coupled to the seat-mounting plate, an activator bar that controls a footrest drive link, and a linear actuator for carrying out automated adjustment of the linkage assembly. In operation, a stroke in a first phase of the linear actuator generates a torque on the activator bar. The footrest drive link converts the torque into a laterally-directed force that pushes the footrest assembly into the extended position. A stroke in the second phase acts to push the activator bar forward and translate the seat-mounting plate forward at a consistent inclination angle. The forward translation causes the rear bellcrank to rotate, thereby biasing the back-mounting link rearward into the reclined position.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: July 12, 2016
    Assignee: L & P Property Management Company
    Inventors: Gregory M. Lawson, Stephen Lake
  • Patent number: 9375089
    Abstract: A seating unit that includes a linkage mechanism adapted to adjust between closed, extended, and reclined positions is provided. The linkage mechanism includes a seat-mounting plate mounted to a footrest assembly, a back-mounting link and a rear bellcrank both rotatably coupled to the seat-mounting plate, an activator bar that controls a footrest drive link, and a linear actuator for carrying out automated adjustment of the linkage assembly. In operation, a stroke in a first phase of the linear actuator generates a torque on the activator bar. The footrest drive link converts the torque into a laterally-directed force that pushes the footrest assembly into the extended position. A stroke in the second phase acts to push the activator bar forward and translate the seat-mounting plate forward at a consistent inclination angle. The forward translation causes the rear bellcrank to rotate, thereby biasing the back-mounting link rearward into the reclined position.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: June 28, 2016
    Assignee: L & P Property Management Company
    Inventors: Gregory M. Lawson, Stephen Lake
  • Patent number: 9372535
    Abstract: Human-electronics interfaces in which at least two wearable electromyography (“EMG”) devices are operated to control virtually any electronic device are described. A first wearable EMG device is worn on a first part/location of a user's body and a second wearable EMG device is worn on a second part/location of the user's body. Muscle activity is detected by the two wearable EMG devices and corresponding communication signals are transmitted to an electronic device to control functions thereof. The two wearable EMG devices may communicate with one another. This configuration enables a user to perform elaborate gestures having multiple components (e.g., “two-arm” gestures) with each wearable EMG device detecting a different component, as well as separate gestures (e.g., separate “one-arm” gestures) individually detected and processed by each wearable EMG device.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: June 21, 2016
    Assignee: THALMIC LABS INC.
    Inventors: Matthew Bailey, Stephen Lake, Aaron Grant
  • Patent number: 9299248
    Abstract: There is disclosed a muscle interface device for use with controllable connected devices. In an embodiment, the muscle interface device comprises a sensor worn on the forearm of a user, and the sensor is adapted to recognize a plurality of gestures made by a user to interact with a controllable connected device. The muscle interface device utilizes a plurality of sensors, including one or more of capacitive EMG sensors and an IMU sensor, to detect gestures made by a user. Other types of sensors including MMG sensors may also be used. The detected user gestures from the sensors are processed into a control signal for allowing the user to interact with content displayed on the controllable connected device.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: March 29, 2016
    Assignee: THALMIC LABS INC.
    Inventors: Stephen Lake, Matthew Bailey, Aaron Grant
  • Publication number: 20150370326
    Abstract: Systems, articles, and methods for wearable human-electronics interfaces are described. A wearable human-electronics interface device includes a band that in use is worn on an appendage (e.g., a wrist, arm, finger, or thumb) of a user. The band carries multiple sensors that are responsive to vibrations. The sensors are physically spaced apart from one another on or within the band. The band also carries an on-board processor. The sensors detect vibrations at the appendage of the user when the user performs different finger tapping gestures (i.e., tapping gestures involving different individual fingers or different combinations of fingers) and provide corresponding vibration signals to the processor. The processor classifies the finger tapping gesture(s) based on the vibration signals and an on-board transmitter sends a corresponding signal to control, operate, or interact with a receiving electronic device. The sensors include inertial sensors, digital MEMS microphones, or a combination thereof.
    Type: Application
    Filed: June 18, 2015
    Publication date: December 24, 2015
    Inventors: Jake Chapeskie, Stephen Lake
  • Publication number: 20150325202
    Abstract: Systems, devices, and methods for wearable computer systems are described. A wearable heads-up display (“WHUD”) is implemented as a peripheral to a wearable electronic band worn on a limb of the user. The majority (or all) of the application storage and processing is performed on the band instead of on the WHUD, and therefore the WHUD does not include all of the hardware infrastructure necessary for application storage and processing. This significantly reduces the bulk of the WHUD and enables more aesthetically pleasing WHUD designs. Graphics processing is also performed on the band instead of on the WHUD. In some implementations, rasterized display data is wirelessly transmitted from the band to the WHUD using an ultra-wideband wireless communication scheme. Gesture-based control of content displayed by the WHUD is enabled by sensors on-board the band itself or by a third wearable component in communication with the band.
    Type: Application
    Filed: May 5, 2015
    Publication date: November 12, 2015
    Inventors: Stephen Lake, Stefan Alexander, Thomas Mahon
  • Publication number: 20150277575
    Abstract: Systems, devices, and methods that implement state machine models in wearable electronic devices are described. A wearable electronic device stores processor-executable gesture identification instructions that, when executed by an on-board processor, enable the wearable electronic device to identify one or more gesture(s) performed by a user. The wearable electronic device also stores processor-executable state determination instructions that, when executed by the processor, cause the wearable electronic device to enter into and transition between various operational states depending on signals detected by on-board sensors. The state machine models described herein enable the wearable electronic devices to identify and automatically recover from operational errors, malfunctions, or crashes with minimal intervention from the user.
    Type: Application
    Filed: March 26, 2015
    Publication date: October 1, 2015
    Inventors: Pedram Ataee, Stephen Lake
  • Publication number: 20150261306
    Abstract: Systems, devices, and methods that select between multiple wireless connections are described. A gesture-based control device detects physical gestures performed by the user. The user performs a specific gesture to indicate a particular perceiving device from a set of available receiving devices with which the user desires to interact. The device identifies the gesture and determines, based on the gesture identity, the particular receiving device in the set of available receiving devices with which the user desires to interact. Based on this determination, the device establishes a wireless connection with the particular receiving device with which the user desires to interact.
    Type: Application
    Filed: March 16, 2015
    Publication date: September 17, 2015
    Inventor: Stephen Lake
  • Publication number: 20150148641
    Abstract: Systems, articles, and methods for surface electromyography (“EMG”) sensors that combine elements from traditional capacitive and resistive EMG sensors are described. For example, capacitive EMG sensors that are adapted to resistively couple to a user's skin are described. Resistive coupling between a sensor electrode and the user's skin is galvanically isolated from the sensor circuitry by a discrete component capacitor included downstream from the sensor electrode. The combination of a resistively coupled electrode and a discrete component capacitor provides the respective benefits of traditional resistive and capacitive (respectively) EMG sensor designs while mitigating respective drawbacks of each approach. A wearable EMG device that provides a component of a human-electronics interface and incorporates such capacitive EMG sensors is also described.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 28, 2015
    Inventors: Cezar Morun, Stephen Lake
  • Publication number: 20150141784
    Abstract: Systems, articles, and methods for improved capacitive electromyography (“EMG”) sensors are described. The improved capacitive EMG sensors include one or more sensor electrode(s) that is/are coated with a protective barrier formed of a material that has a relative permittivity ?r of about 10 or more. The protective barrier shields the sensor electrode(s) from moisture, sweat, skin oils, etc. while advantageously contributing to a large capacitance between the sensor electrode(s) and the user's body. In this way, the improved capacitive EMG sensors provide enhanced robustness against variations in skin and/or environmental conditions. Such improved capacitive EMG sensors are particularly well-suited for use in wearable EMG devices that may be worn by a user for an extended period of time and/or under a variety of skin and/or environmental conditions. A wearable EMG device that provides a component of a human-electronics interface and incorporates such improved capacitive EMG sensors is described.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 21, 2015
    Inventors: Cezar Morun, Stephen Lake
  • Publication number: 20150124566
    Abstract: Wearable electronic devices that employ one or more contact sensors (e.g., capacitive sensors and/or biometric sensors) are described. Contact sensors include electromyography sensors and/or capacitive touch sensors. Capacitive touch sensors include single-frequency capacitive touch sensors, recently-proposed swept frequency capacitive touch sensors, and a generalized version of swept frequency capacitive touch sensors referred to as multi-frequency capacitive touch sensors. The contact sensors are integrated into various devices, including generic watchstraps that may be substituted for the existing watchstrap in any wristwatch design, generic watch back-plates that may be substituted for the existing back-plate in any wristwatch design, and wearable electromyography devices that provide gesture-based control in a human-electronics interface.
    Type: Application
    Filed: October 3, 2014
    Publication date: May 7, 2015
    Inventors: Stephen Lake, Matthew Bailey
  • Publication number: 20150070270
    Abstract: Human-electronics interfaces in which at least two wearable electromyography (“EMG”) devices are operated to control virtually any electronic device are described. A first wearable EMG device is worn on a first part/location of a user's body and a second wearable EMG device is worn on a second part/location of the user's body. Muscle activity is detected by the two wearable EMG devices and corresponding communication signals are transmitted to an electronic device to control functions thereof. The two wearable EMG devices may communicate with one another. This configuration enables a user to perform elaborate gestures having multiple components (e.g., “two-arm” gestures) with each wearable EMG device detecting a different component, as well as separate gestures (e.g., separate “one-arm” gestures) individually detected and processed by each wearable EMG device.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 12, 2015
    Inventors: Matthew Bailey, Stephen Lake, Aaron Grant
  • Publication number: 20150057770
    Abstract: Human-electronics interfaces in which a wearable electromyography (“EMG”) device is operated to control virtually any electronic device are described. In response to detected muscle activity and/or motions of a user, the wearable EMG device transmits generic gesture identification flags that are not specific to the particular electronic device(s) being controlled. An electronic device being controlled is programmed with user-definable instructions for how to interpret and respond to the gesture identification flags.
    Type: Application
    Filed: August 21, 2014
    Publication date: February 26, 2015
    Inventors: Matthew Bailey, Stephen Lake, Aaron Grant
  • Publication number: 20150051470
    Abstract: Wearable electronic devices that employ techniques for routing signals between components are described. An exemplary wearable electronic device includes a set of pod structures with each pod structure positioned adjacent and physically coupled to at least one other pod structure. The set of pod structures includes multiple sensor pods and at least one processor pod. Each sensor pod includes an on-board sensor to in use detect user-effected inputs and provide signals in response to the user-effected inputs. The signals are serially routed via successive ones of adjacent pod structures by respective communicative pathways until the signals are routed from the sensor pods to the processor pod. A processor on-board the processor pod processes the signals. Systems, articles, and methods for routing electrical signals and/or optical signals, including analog signals and/or digital signals, between pod structures are described.
    Type: Application
    Filed: August 15, 2014
    Publication date: February 19, 2015
    Inventors: Matthew Bailey, Stephen Lake, Aaron Grant
  • Publication number: 20140249397
    Abstract: A differential non-contact sensor system for measuring biopotential signals is described. The sensor is a low-noise, non-contact capacitive sensor system to measure electrical voltage signals generated by the body comprising two capacitive electrodes and outputting a differential signal.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 4, 2014
    Applicant: Thalmic Labs Inc.
    Inventors: Stephen Lake, Alborz Rezazadeh Sereshkeh, Matthew Bailey, Aaron Grant
  • Publication number: 20140240223
    Abstract: There is disclosed a muscle interface device for use with controllable connected devices. In an embodiment, the muscle interface device comprises a sensor worn on the forearm of a user, and the sensor is adapted to recognize a plurality of gestures made by a user to interact with a controllable connected device. The muscle interface device utilizes a plurality of sensors, including one or more of capacitive EMG sensors and an IMU sensor, to detect gestures made by a user. Other types of sensors including MMG sensors may also be used. The detected user gestures from the sensors are processed into a control signal for allowing the user to interact with content displayed on the controllable connected device.
    Type: Application
    Filed: February 21, 2014
    Publication date: August 28, 2014
    Applicant: Thalmic Labs Inc.
    Inventors: Stephen Lake, Matthew Bailey, Aaron Grant