Patents by Inventor Stephen Ledingham

Stephen Ledingham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11627420
    Abstract: A hearing aid including a hearing aid antenna assembly, a transceiver, and an acoustic transducer is provided. The hearing aid assembly includes a resonant loop antenna, a coupling mechanism such as a primary loop, and an electrically conductive assembly. The resonant loop antenna forms an aperture that is arranged to be substantially parallel to a head of the wearer when the hearing aid is worn. The coupling mechanism is configured to transfer RF energy between the transceiver and the resonant loop antenna. The resonant loop antenna excites the electrically conductive assembly. The electrically conductive assembly includes a battery shield. The resonant loop antenna, the coupling mechanism, and/or the electrically conductive assembly are formed in one or more conductive layers of FPCB. The resonant loop antenna includes a course tuning capacitor in series with a fine tuning capacitor. The primary loop includes a resonating capacitor.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: April 11, 2023
    Assignee: Bose Corporation
    Inventor: Stephen Ledingham
  • Publication number: 20220369049
    Abstract: A hearing aid including a hearing aid antenna assembly, a transceiver, and an acoustic transducer is provided. The hearing aid assembly includes a resonant loop antenna, a coupling mechanism such as a primary loop, and an electrically conductive assembly. The resonant loop antenna forms an aperture that is arranged to be substantially parallel to a head of the wearer when the hearing aid is worn. The coupling mechanism is configured to transfer RF energy between the transceiver and the resonant loop antenna. The resonant loop antenna excites the electrically conductive assembly. The electrically conductive assembly includes a battery shield. The resonant loop antenna, the coupling mechanism, and/or the electrically conductive assembly are formed in one or more conductive layers of FPCB. The resonant loop antenna includes a course tuning capacitor in series with a fine tuning capacitor. The primary loop includes a resonating capacitor.
    Type: Application
    Filed: May 14, 2021
    Publication date: November 17, 2022
    Applicant: Bose Corporation
    Inventor: Stephen Ledingham
  • Patent number: 10958312
    Abstract: An embodiment of an antenna module includes a substrate, a first antenna, and a second antenna. The first antenna is disposed on the substrate and is configured to radiate a first signal having a wavelength and a first polarization. And the second antenna is disposed on the substrate and is configured to radiate a second signal having the wavelength and a second polarization that is approximately orthogonal to the first polarization. For example, such an antenna module can include, as the first antenna, a T antenna configured to transmit and receive data that forms a first part of a MIMO-OFDM data symbol, and can include, as the second antenna, an F antenna configured to transmit and receive data that forms a second part of the MIMO-OFDM data symbol.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: March 23, 2021
    Assignee: CommScope Technologies LLC
    Inventors: Michael Pollman, Kevin E. Craig, David Davies, Stephen Ledingham
  • Patent number: 10701512
    Abstract: A geo-fencing system (102) includes a base device (104) configured to create a virtual fence (108) around the base devise that bounds a safe zone (110). The geo-fencing system further includes a wearable device (106) initially located within the safe zone. The geo-fencing system further includes a processor configured to execute a dynamic adaptive control algorithm that computes at least one operating parameter for at least one of the base device and the wearable device based on a dynamic and adaptive combination of different signals indicative of distance measurements between the wearable device and the base device computed by the at least one of the base device and the wearable device. The processor conveys the at least one operating parameter to the at least one of the base device and the wearable device, which employs the at least one operating parameter for operation and determination of subsequent distance measurements.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: June 30, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Wilhelmus Andreas Marinus Arnoldus Maria Van Den Dungen, Stephen Ledingham, Tomas Russ, Wilhelmus Josephus Box
  • Publication number: 20190215648
    Abstract: A geo-fencing system (102) includes a base device (104) configured to create a virtual fence (108) around the base devise that bounds a safe zone (110). The geo-fencing system further includes a wearable device (106) initially located within the safe zone. The geo-fencing system further includes a processor configured to execute a dynamic adaptive control algorithm that computes at least one operating parameter for at least one of the base device and the wearable device based on a dynamic and adaptive combination of different signals indicative of distance measurements between the wearable device and the base device computed by the at least one of the base device and the wearable device. The processor conveys the at least one operating parameter to the at least one of the base device and the wearable device, which employs the at least one operating parameter for operation and determination of subsequent distance measurements.
    Type: Application
    Filed: May 30, 2017
    Publication date: July 11, 2019
    Inventors: WILHELMUS ANDREAS MARINUS ARNOLDUS MARIA VAN DEN DUNGEN, STEPHEN LEDINGHAM, TOMAS RUSS, WILHELMUS JOSEPHUS BOX
  • Patent number: 10198932
    Abstract: In a personal emergency response system (PERS), a personal help button (PHB) (10) includes a call button (12), a motion sensor (22), and a transmitter or transceiver (24) for transmitting a wireless call signal responsive to pressing the call button. An electronic processor (28) performs a compliance monitoring process (42) at successive compliance check times, each including: acquiring motion sensor data over a compliance data acquisition time interval; determining whether the PHB has moved since the last compliance check time; and assessing compliance based at least in part on the determination of whether the PHB has moved. The determining may include determining an orientation change of the PHB since the last check time. Alternatively, compliance may be monitored by detecting and logging wake-up interrupt events that cause the motion sensor to switch from a low-power mode to an operational mode.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: February 5, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Stephen Ledingham, Warner Rudolph Theophile Ten Kate, Michael Bellomo, Andrea Ryter, Tine Smits
  • Publication number: 20180225954
    Abstract: In a personal emergency response system (PERS), a personal help button (PHB) (10) includes a call button (12), a motion sensor (22), and a transmitter or transceiver (24) for transmitting a wireless call signal responsive to pressing the call button. An electronic processor (28) performs a compliance monitoring process (42) at successive compliance check times, each including: acquiring motion sensor data over a compliance data acquisition time interval; determining whether the PHB has moved since the last compliance check time; and assessing compliance based at least in part on the determination of whether the PHB has moved. The determining may include determining an orientation change of the PHB since the last check time. Alternatively, compliance may be monitored by detecting and logging wake-up interrupt events that cause the motion sensor to switch from a low-power mode to an operational mode.
    Type: Application
    Filed: July 5, 2016
    Publication date: August 9, 2018
    Inventors: STEPHEN LEDINGHAM, WARNER RUDOLPH THEOPHILE TEN KATE, MICHAEL BELLOMO, ANDREA RYTER, TINE SMITS
  • Patent number: 10021239
    Abstract: A Personal Emergency Response System (PERS) includes a call device (10) with a call button (12), LAN (20), WAN (22), and locator service(s) (26, 42). The PERS further includes a hub or gateway device (30). The call device is programmed to periodically send transmissions to the hub or gateway device using the LAN, recognize based on the transmissions that the call device is no longer in a home geo-fence, and transition to communicating using the WAN in response to recognizing that the call device is no longer in the home geo-fence. The transition also includes turning on the locator service(s). The call button triggers the call device to contact the hub or gateway device using the LAN, or a PERS call center when using the WAN. A speaker (14) and microphone (16) are built into the call device for use when communicating using the WAN.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: July 10, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Stephen Ledingham, Tomas Russ, Jeff Li, Pavan Reddy, Alan Brav, Bin Wu, Jinyan Li, Brian Gallagher
  • Publication number: 20160094966
    Abstract: A Personal Emergency Response System (PERS) includes a call device (10) with a call button (12), LAN (20), WAN (22), and locator service(s) (26, 42). The PERS further includes a hub or gateway device (30). The call device is programmed to periodically send transmissions to the hub or gateway device using the LAN, recognize based on the transmissions that the call device is no longer in a home geo-fence, and transition to communicating using the WAN in response to recognizing that the call device is no longer in the home geo-fence. The transition also includes turning on the locator service(s). The call button triggers the call device to contact the hub or gateway device using the LAN, or a PERS call center when using the WAN. A speaker (14) and microphone (16) are built into the call device for use when communicating using the WAN.
    Type: Application
    Filed: September 23, 2015
    Publication date: March 31, 2016
    Inventors: Stephen LEDINGHAM, Tomas RUSS, Jeff LI, Pavan REDDY, Alan BRAV, Bin WU, Jinyan LI, Brian GALLAGHER
  • Publication number: 20160003931
    Abstract: A system (10) and a method (150) track a tracking device (14). A radio frequency (RF) receiver (52) is configured to receive a periodic beacon signal originating at the tracking device (14). The periodic beacon signal is received with a directional antenna (36) at multiple bearings over time. An estimator (70) is configured to estimate a bearing to the tracking device (14) as the bearing of the multiple bearings in which a time of flight (ToF) of the periodic beacon signal is lowest. The RF receiver (52) can further be configured to simultaneously receive multiple instances of the periodic beacon signal with the directional antenna (36) at a bearing of the multiple bearings. In such instances, the RF receiver (52) is further configured to correlate the instances to identify which of the instances has a lowest ToF.
    Type: Application
    Filed: February 20, 2014
    Publication date: January 7, 2016
    Inventors: STEPHEN LEDINGHAM, KLAAS CORNELIS JAN WIJBRANS, PAVAN KOLAN REDDY
  • Patent number: 9178556
    Abstract: A mobile device having a printed circuit board, a wireless transceiver, an antenna having an earth plane and coupled to the wireless transceiver, a conductive earth plane extension conductively coupled to the earth plane and a neck cord adapted to support the mobile device from a neck of a user of the device, wherein the conductive earth plane extension is incorporated into the neck cord. Also, an antenna assembly having an antenna having an earth plane, the antenna being adapted to be coupled to a wireless transceiver, a conductive earth plane extension coupled to the earth plane and a neck cord adapted to support a mobile device housing the antenna from a neck of a user of the device, wherein the conductive earth plane extension is incorporated into the neck cord.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: November 3, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Stephen Ledingham, Richard Alexander Cote
  • Publication number: 20140080545
    Abstract: A mobile device having a printed circuit board, a wireless transceiver, an antenna having an earth plane and coupled to the wireless transceiver, a conductive earth plane extension conductively coupled to the earth plane and a neck cord adapted to support the mobile device from a neck of a user of the device, wherein the conductive earth plane extension is incorporated into the neck cord. Also, an antenna assembly having an antenna having an earth plane, the antenna being adapted to be coupled to a wireless transceiver, a conductive earth plane extension coupled to the earth plane and a neck cord adapted to support a mobile device housing the antenna from a neck of a user of the device, wherein the conductive earth plane extension is incorporated into the neck cord.
    Type: Application
    Filed: May 10, 2012
    Publication date: March 20, 2014
    Inventors: Stephen Ledingham, Richard Alexander Cote