Patents by Inventor Stephen Leslie Buchwalter

Stephen Leslie Buchwalter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8541299
    Abstract: An electrical interconnect forming method. The electrical interconnect includes a first substrate comprising a first electrically conductive pad, a second substrate comprising a second electrically conductive pad, and an interconnect structure electrically and mechanically connecting the first electrically conductive pad to the second electrically conductive pad. The interconnect structure comprises a non-solder metallic core structure, a first solder structure, and a second solder structure. The first solder structure electrically and mechanically connects a first portion of the non-solder metallic core structure to the first electrically conductive pad. The second solder structure electrically and mechanically connects a second portion of the non-solder metallic core structure to the second electrically conductive pad.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: September 24, 2013
    Assignee: Ultratech, Inc.
    Inventors: Stephen Leslie Buchwalter, Bruce K. Furman, Peter A. Gruber, Jae-Woong Nah, Da-Yuan Shih
  • Patent number: 8476773
    Abstract: An electrical structure including a first substrate comprising a first electrically conductive pad, a second substrate comprising a second electrically conductive pad, and an interconnect structure electrically and mechanically connecting the first electrically conductive pad to the second electrically conductive pad. The interconnect structure comprises a non-solder metallic core structure, a first solder structure, and a second solder structure. The first solder structure electrically and mechanically connects a first portion of the non-solder metallic core structure to the first electrically conductive pad. The second solder structure electrically and mechanically connects a second portion of the non-solder metallic core structure to the second electrically conductive pad.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: July 2, 2013
    Assignee: International Business Machines Corporation
    Inventors: Stephen Leslie Buchwalter, Bruce K. Furman, Peter A. Gruber, Jae-Woong Nah, Da-Yuan Shih
  • Patent number: 8242010
    Abstract: An electrical interconnect forming method. The electrical interconnect includes a first substrate comprising a first electrically conductive pad, a second substrate comprising a second electrically conductive pad, and an interconnect structure electrically and mechanically connecting the first electrically conductive pad to the second electrically conductive pad. The interconnect structure comprises a non-solder metallic core structure, a first solder structure, and a second solder structure. The first solder structure electrically and mechanically connects a first portion of the non-solder metallic core structure to the first electrically conductive pad. The second solder structure electrically and mechanically connects a second portion of the non-solder metallic core structure to the second electrically conductive pad.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: August 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Stephen Leslie Buchwalter, Bruce K. Furman, Peter A. Gruber, Jae-Woong Nah, Da-Yuan Shih
  • Publication number: 20100230143
    Abstract: An electrical structure including a first substrate comprising a first electrically conductive pad, a second substrate comprising a second electrically conductive pad, and an interconnect structure electrically and mechanically connecting the first electrically conductive pad to the second electrically conductive pad. The interconnect structure comprises a non-solder metallic core structure, a first solder structure, and a second solder structure. The first solder structure electrically and mechanically connects a first portion of the non-solder metallic core structure to the first electrically conductive pad. The second solder structure electrically and mechanically connects a second portion of the non-solder metallic core structure to the second electrically conductive pad.
    Type: Application
    Filed: May 26, 2010
    Publication date: September 16, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen Leslie Buchwalter, Bruce K. Furman, Peter A. Gruber, Jae-Woong Nah, Da-Yuan Shih
  • Publication number: 20100230474
    Abstract: An electrical interconnect forming method. The electrical interconnect includes a first substrate comprising a first electrically conductive pad, a second substrate comprising a second electrically conductive pad, and an interconnect structure electrically and mechanically connecting the first electrically conductive pad to the second electrically conductive pad. The interconnect structure comprises a non-solder metallic core structure, a first solder structure, and a second solder structure. The first solder structure electrically and mechanically connects a first portion of the non-solder metallic core structure to the first electrically conductive pad. The second solder structure electrically and mechanically connects a second portion of the non-solder metallic core structure to the second electrically conductive pad.
    Type: Application
    Filed: May 26, 2010
    Publication date: September 16, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen Leslie Buchwalter, Bruce K. Furman, Peter A. Gruber, Jae-Woong Nah, Da-Yuan Shih
  • Publication number: 20100230475
    Abstract: An electrical interconnect forming method. The electrical interconnect includes a first substrate comprising a first electrically conductive pad, a second substrate comprising a second electrically conductive pad, and an interconnect structure electrically and mechanically connecting the first electrically conductive pad to the second electrically conductive pad. The interconnect structure comprises a non-solder metallic core structure, a first solder structure, and a second solder structure. The first solder structure electrically and mechanically connects a first portion of the non-solder metallic core structure to the first electrically conductive pad. The second solder structure electrically and mechanically connects a second portion of the non-solder metallic core structure to the second electrically conductive pad.
    Type: Application
    Filed: May 26, 2010
    Publication date: September 16, 2010
    Applicant: International Business Machines Corporation
    Inventors: Stephen Leslie Buchwalter, Bruce K. Furman, Peter A. Gruber, Jae-Woong Nah, Da-Yuan Shih
  • Patent number: 7786001
    Abstract: An electrical structure and method of forming. The electrical structure includes a first substrate comprising a first electrically conductive pad, a second substrate comprising a second electrically conductive pad, and an interconnect structure electrically and mechanically connecting the first electrically conductive pad to the second electrically conductive pad. The interconnect structure comprises a non-solder metallic core structure, a first solder structure, and a second solder structure. The first solder structure electrically and mechanically connects a first portion of the non-solder metallic core structure to the first electrically conductive pad. The second solder structure electrically and mechanically connects a second portion of the non-solder metallic core structure to the second electrically conductive pad.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Stephen Leslie Buchwalter, Bruce K. Furman, Peter A. Gruber, Jae-Woong Nah, Da-Yuan Shih
  • Patent number: 7776993
    Abstract: A reworkable thermoset epoxy-containing material that allows for a reworkable assembly such as a reworkable waferlevel underfilled microelectronic package. A method for using the reworkable thermoset material in the formation of a microelectronic package using this material.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: August 17, 2010
    Assignee: International Business Machines Corporation
    Inventors: Stephen Leslie Buchwalter, Claudius Feger, Gareth Hougham, Nancy LaBianca, Hosadurga Shobha
  • Publication number: 20090065555
    Abstract: An electrical structure method of forming. The method includes forming a plurality of individual metallic structures from metallic layer formed over a first substrate. A plurality of vias are formed within a second substrate. The plurality of vias are positioned over and surrounding the plurality of metallic structures. A portion of each via is filled with solder to form solder structure surrounding an exterior surface of each metallic structure. The first substrate is removed from the metallic structures. The metallic structures comprising the solder structures are positioned over a third substrate comprising a plurality of electrically conductive pads. The metallic structures comprising the solder structures are heated to a temperature sufficient to cause the solder to melt and form an electrical and mechanical connection between each metallic structure and an associated electrically conductive pad. The second substrate is removed from the individual metallic structures.
    Type: Application
    Filed: September 12, 2007
    Publication date: March 12, 2009
    Inventors: Stephen Leslie Buchwalter, Peter A. Gruber, Da-Yuan Shih
  • Publication number: 20080251281
    Abstract: An electrical structure and method of forming. The electrical structure includes a first substrate comprising a first electrically conductive pad, a second substrate comprising a second electrically conductive pad, and an interconnect structure electrically and mechanically connecting the first electrically conductive pad to the second electrically conductive pad. The interconnect structure comprises a non-solder metallic core structure, a first solder structure, and a second solder structure. The first solder structure electrically and mechanically connects a first portion of the non-solder metallic core structure to the first electrically conductive pad. The second solder structure electrically and mechanically connects a second portion of the non-solder metallic core structure to the second electrically conductive pad.
    Type: Application
    Filed: April 11, 2007
    Publication date: October 16, 2008
    Inventors: Stephen Leslie Buchwalter, Bruce K. Furman, Peter A. Gruber, Jae-Woong Nah, Da-Yuan Shih
  • Patent number: 7064013
    Abstract: An electronic structure bondable to an electronic assembly, such as a chip. The electronic structure may be joined to a electronic assembly, such as a chip, by use of a structural epoxy adhesive. The electronic structure includes a mineral layer on a metallic plate, and an adhesion promoter layer on the mineral layer. The metallic plate includes a metallic substance that includes a pure metal with or without a metal coating. The metallic substance may include such substances as stainless steel, aluminum, titanium, copper, copper coated with nickel, and copper coated with chrome. The mineral layer includes a chemical compound derived from a mineral; e.g., silicon dioxide (SiO2) derived from quartz. Such chemical compounds may include such substances as silicon dioxide, silicon nitride, and silicon carbide. The chemical compound may exist in either crystalline or amorphous form. The adhesion promoter may include such chemical substances as silanes, titanates, zirconates, and aluminates.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: June 20, 2006
    Assignee: International Business Machines Corporation
    Inventors: Stephen Leslie Buchwalter, Hung Manh Dang, Michael A. Gaynes, Konstantinos I. Papathomas
  • Patent number: 6919420
    Abstract: Reworkable thermoset acid-cleavable acetal and ketal based epoxy oligomers can be B-staged into a tack free state. Compositions containing the epoxy oligomers are employed in a reworkable assembly such as a wafer-level underfilled microelectronic package.
    Type: Grant
    Filed: December 5, 2002
    Date of Patent: July 19, 2005
    Assignee: International Business Machines Corporation
    Inventors: Stephen Leslie Buchwalter, Claudius Feger, Gareth Hougham, Nancy LaBianca, Hosadurga Shobha
  • Publication number: 20040238967
    Abstract: An electronic structure bondable to an electronic assembly, such as a chip. The electronic structure may be joined to a electronic assembly, such as a chip, by use of a structural epoxy adhesive. The electronic structure includes a mineral layer on a metallic plate, and an adhesion promoter layer on the mineral layer. The metallic plate includes a metallic substance that includes a pure metal with or without a metal coating. The metallic substance may include such substances as stainless steel, aluminum, titanium, copper, copper coated with nickel, and copper coated with chrome. The mineral layer includes a chemical compound derived from a mineral; e.g., silicon dioxide (SiO2) derived from quartz. Such chemical compounds may include such substances as silicon dioxide, silicon nitride, and silicon carbide. The chemical compound may exist in either crystalline or amorphous form. The adhesion promoter may include such chemical substances as silanes, titanates, zirconates, and aluminates.
    Type: Application
    Filed: July 1, 2004
    Publication date: December 2, 2004
    Inventors: Stephen Leslie Buchwalter, Hung Manh Dang, Michael A. Gaynes, Konstantinos I. Papathomas
  • Patent number: 6803256
    Abstract: An electronic structure bondable to an electronic assembly, such as a chip. The electronic structure may be joined to a electronic assembly, such as a chip, by use of a structural epoxy adhesive. The electronic structure includes a mineral layer on a metallic plate, and an adhesion promoter layer on the mineral layer. The metallic plate includes a metallic substance that includes a pure metal with or without a metal coating. The metallic substance may include such substances as stainless steel, aluminum, titanium, copper, copper coated with nickel, and copper coated with chrome. The mineral layer includes a chemical compound derived from a mineral; e.g., silicon dioxide (SiO2) derived from quartz. Such chemical compounds may include such substances as silicon dioxide, silicon nitride, and silicon carbide. The chemical compound may exist in either crystalline or amorphous form. The adhesion promoter may include such chemical substances as silanes, titanates, zirconates, and aluminates.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: October 12, 2004
    Assignee: International Business Machines Corporation
    Inventors: Stephen Leslie Buchwalter, Hung Manh Dang, Michael A. Gaynes, Konstantinos I. Papathomas
  • Publication number: 20040110010
    Abstract: A reworkable thermoset epoxy-containing material that allows for a reworkable assembly such as a reworkable waferlevel underfilled miocroelectronic package. A method for using the reworkable thermoset material in the formation of a microelectronic package using this material.
    Type: Application
    Filed: December 5, 2002
    Publication date: June 10, 2004
    Inventors: Stephen Leslie Buchwalter, Claudius Feger, Gareth Hougham, Nancy LaBianca, Hosadurga Shobha
  • Patent number: 6531343
    Abstract: A method of encapsulating a circuit assembly including a chip; a substrate; at least one solder joint which spans between the chip and the substrate forming an electrically conductive connection between the chip and the substrate by applying an encapsulant adjacent the solder joint, wherein the encapsulant comprises a thermoplastic polymer formed by ring opening polymerization of a cyclic oligomer.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: March 11, 2003
    Assignee: International Business Machines Corporation
    Inventors: Kenneth Raymond Carter, Craig Jon Hawker, James Lupton Hedrick, Robert Dennis Miller, Michael Anthony Gaynes, Stephen Leslie Buchwalter
  • Publication number: 20020121698
    Abstract: An electronic structure bondable to an electronic assembly, such as a chip. The electronic structure may be joined to a electronic assembly, such as a chip, by use of a structural epoxy adhesive. The electronic structure includes a mineral layer on a metallic plate, and an adhesion promoter layer on the mineral layer. The metallic plate includes a metallic substance that includes a pure metal with or without a metal coating. The metallic substance may include such substances as stainless steel, aluminum, titanium, copper, copper coated with nickel, and copper coated with chrome. The mineral layer includes a chemical compound derived from a mineral; e.g., silicon dioxide (SiO2) derived from quartz. Such chemical compounds may include such substances as silicon dioxide, silicon nitride, and silicon carbide. The chemical compound may exist in either crystalline or amorphous form. The adhesion promoter may include such chemical substances as silanes, titanates, zirconates, and aluminates.
    Type: Application
    Filed: January 4, 2002
    Publication date: September 5, 2002
    Applicant: International Business Machines Corporation
    Inventors: Stephen Leslie Buchwalter, Hung Manh Dang, Michael A. Gaynes, Konstantinos I. Papathomas
  • Patent number: 6369452
    Abstract: An electronic structure bondable to an electronic assembly, such as a chip. The electronic structure may be joined to a electronic assembly, such as a chip, by use of a structural epoxy adhesive. The electronic structure includes a mineral layer on a metallic plate, and an adhesion promoter layer on the mineral layer. The metallic plate includes a metallic substance that includes a pure metal with or without a metal coating. The metallic substance may include such substances as stainless steel, aluminum, titanium, copper, copper coated with nickel, and copper coated with chrome. The mineral layer includes a chemical compound derived from a mineral; e.g., silicon dioxide (SiO2) derived from quartz. Such chemical compounds may include such substances as silicon dioxide, silicon nitride, and silicon carbide. The chemical compound may exist in either crystalline or amorphous form. The adhesion promoter may include such chemical substances as silanes, titanates, zirconates, and aluminates.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: April 9, 2002
    Assignee: International Business Machines Corporation
    Inventors: Stephen Leslie Buchwalter, Hung Manh Dang, Michael A. Gaynes, Konstantinos I. Papathomas
  • Patent number: 6326237
    Abstract: The invention is an encapsulated circuit assembly including a chip; a substrate; at least one solder joint, wherein the solder joint spans between the chip and the substrate forming an electrically conductive connection between the chip and the substrate; and an encapsulant formed adjacent the solder joint, wherein the encapsulant comprises a hyperbranched polymer formed by the reaction of a monomer of the formula: (A)nRB, wherein A is a coupling group reactive with B, B is a coupling group reactive with A, n is greater than 1, and R is a group selected from the group consisting of an aromatic group, an aliphatic group, and mixtures thereof Also disclosed is a method of encapsulating a circuit assembly using the encapsulant of the invention.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: December 4, 2001
    Assignee: International Business Machines Corporation
    Inventors: Kenneth Raymond Carter, Craig Jon Hawker, James Lupton Hedrick, Robert Dennis Miller, Michael Anthony Gaynes, Stephen Leslie Buchwalter
  • Patent number: 6258899
    Abstract: A cleavable epoxy resin composition suitable for encapsulating electronic chips comprising the cured reaction product of a diepoxide containing a cyclic anhydride curing agent or and an amine promoter.
    Type: Grant
    Filed: April 7, 1999
    Date of Patent: July 10, 2001
    Assignee: International Business Machines Corporation
    Inventors: Stephen Leslie Buchwalter, Joseph Paul Kuczynski, John Gregory Stephanie