Patents by Inventor Stephen M. Fry

Stephen M. Fry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10052082
    Abstract: A method and system is provided for using backscattered data and known parameters to characterize vascular tissue. Specifically, methods and devices for identifying information about the imaging element used to gather the backscattered data are provided in order to permit an operation console having a plurality of Virtual Histology classification trees to select the appropriate VH classification tree for analyzing data gathered using that imaging element. In order to select the appropriate VH database for analyzing data from a specific imaging catheter, it is advantageous to know information regarding the function and performance of the catheter, such as the operating frequency of the catheter and whether it is a rotational or phased-array catheter. The present invention provides a device and method for storing this information on the imaging catheter and communicating the information to the operation console.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: August 21, 2018
    Assignee: Volcano Corporation
    Inventors: Norman Hugh Hossack, Stephen Charles Davies, Donald Mamayek, Richard Scott Huennekens, Stephen M. Fry, Eric Vaughn Mott, Peter Smith, Scott Tennant Brownlie, Jon David Klingensmith, Richard Chester Klosinski, Jr., Edward Anthony Oliver, Masood Ahmed, Gerald Lea Litzza
  • Publication number: 20150342564
    Abstract: A method and system is provided for using backscattered data and known parameters to characterize vascular tissue. Specifically, methods and devices for identifying information about the imaging element used to gather the backscattered data are provided in order to permit an operation console having a plurality of Virtual Histology classification trees to select the appropriate VH classification tree for analyzing data gathered using that imaging element. In order to select the appropriate VH database for analyzing data from a specific imaging catheter, it is advantageous to know information regarding the function and performance of the catheter, such as the operating frequency of the catheter and whether it is a rotational or phased-array catheter. The present invention provides a device and method for storing this information on the imaging catheter and communicating the information to the operation console.
    Type: Application
    Filed: August 7, 2015
    Publication date: December 3, 2015
    Inventors: Norman Hugh Hossack, Stephen Charles Davies, Donald Mamayek, Richard Scott Huennekens, Stephen M. Fry, Eric Vaughn Mott, Peter Smith, Scott Tennant Brownlie, Jon David Klingensmith, Richard Chester Klosinski, JR., Edward Anthony Oliver, Masood Ahmed, Gerald Lea Litzza
  • Patent number: 9101298
    Abstract: A method and system is provided for using backscattered data and known parameters to characterize vascular tissue. Specifically, methods and devices for identifying information about the imaging element used to gather the backscattered data are provided in order to permit an operation console having a plurality of Virtual Histology classification trees to select the appropriate VH classification tree for analyzing data gathered using that imaging element. In order to select the appropriate VH database for analyzing data from a specific imaging catheter, it is advantageous to know information regarding the function and performance of the catheter, such as the operating frequency of the catheter and whether it is a rotational or phased-array catheter. The present invention provides a device and method for storing this information on the imaging catheter and communicating the information to the operation console.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: August 11, 2015
    Assignee: Volcano Corporation
    Inventors: Norman Hugh Hossack, Stephen Charles Davies, Donald Mamayek, Richard Scott Huennekens, Stephen M. Fry, Eric Vaughn Mott, Peter Smith, Scott Tennant Brownlie, Jon David Klingensmith, Richard Chester Klosinski, Jr., Edward Anthony Oliver, Masood Ahmed, Gerald Lea Litzza
  • Publication number: 20110270091
    Abstract: A method and system is provided for using backscattered data and known parameters to characterize vascular tissue. Specifically, methods and devices for identifying information about the imaging element used to gather the backscattered data are provided in order to permit an operation console having a plurality of Virtual Histology classification trees to select the appropriate VH classification tree for analyzing data gathered using that imaging element. In order to select the appropriate VH database for analyzing data from a specific imaging catheter, it is advantageous to know information regarding the function and performance of the catheter, such as the operating frequency of the catheter and whether it is a rotational or phased-array catheter. The present invention provides a device and method for storing this information on the imaging catheter and communicating the information to the operation console.
    Type: Application
    Filed: July 13, 2011
    Publication date: November 3, 2011
    Applicant: VOLCANO CORPORATION
    Inventors: Norman Hugh Hossack, Stephen Charles Davies, Donald Mamayek, Richard Scott Huennekens, Stephen M. Fry, Eric Vaughn Mott, Peter Smith, Scott Tennant Brownlie, Jon David Klingensmith, Richard Chester Klosinski, JR., Edward Anthony Oliver, Masood Ahmed, Gerald Lea Litzza
  • Patent number: 7930014
    Abstract: A system and method for providing a vascular image are disclosed wherein a single composite display simultaneously provides a first view of a patient including an angiogram image and a second view including an intravascular image rendered from information provided by an imaging probe mounted on a distal end of a flexible elongate member. A cursor, having a position derived from image information provided by a radiopaque marker proximate the imaging probe, is displayed within the angiogram image to correlate the position of the imaging probe to a presently displayed intravascular image and thus provide an easily discernable identification of a position within a patient corresponding to a currently displayed intravascular image. The resulting composite display simultaneously provides: an intravascular image that includes information about a vessel that is not available from an angiogram and a current location within a vessel of a source of intravascular image data from which the intravascular image is rendered.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: April 19, 2011
    Assignee: Volcano Corporation
    Inventors: R. Scott Huennekens, Stephen M. Fry, Blair D. Walker, Jon D. Klingensmith, Nancy Perry Pool, Vincent J. Burgess, William R. Kanz
  • Patent number: 6755821
    Abstract: Shock-waves are applied using a combination lithotripsy probe/balloon system, comprising a needle and cannular balloon which can be inserted through the skin at a point between the ribs into the cavity beneath the chest wall and overlying the heart. Alternatively, the shock-wave can be administered extracorporally or via a catheter. A fluid injector is connected to the balloon, allowing it to be inflated with saline or other appropriate fluid to fill the space (for transmission of shock waves and/or to displace tissue—such as lung) and contact the surface of the heart. A shock-wave (acoustic) generator is used to generate shock-waves through the lithotripsy probe, through the fluid and into the myocardial tissue. The fluid provides a uniform medium for transmission of the acoustic energy, allowing precise focus and direction of the shock-wave to induce repeatable cavitation events, producing small fissures which are created by the cavitation bubbles.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: June 29, 2004
    Assignee: Cardiocavitational Systems, Inc.
    Inventor: Stephen M. Fry
  • Patent number: 4791926
    Abstract: A method of controlling laser energy removal of plaque or other obstructions from a vessel of the cardiovascular system includes advancing a laser delivery catheter to a position in proximity with a targeted lesion, placing a laser energy sensor device in a monitoring position adapted to sense laser energy from the catheter that passes beyond the lesion, and controlling the laser energy according to the output of the sensor. An intraoperative approach places the sensor external to the vessel, while a percutaneous approach places the sensor within the vessel utilizing an additional sensor fiber on the catheter that extends beyond the lesion to the monitoring position. Each fiber in a multifiber laser delivery bundle may be controlled according to sensor output for precision aiming and improved laser control.
    Type: Grant
    Filed: November 10, 1987
    Date of Patent: December 20, 1988
    Assignee: Baxter Travenol Laboratories, Inc.
    Inventor: Stephen M. Fry
  • Patent number: 4322693
    Abstract: A multi-line NH.sub.3 laser is disclosed pumped by a multi-longitudinal mode and multi-transverse mode laser beam from a high-pressure CO.sub.2 laser operating on the R(30) 9.2 .mu.m transition. The resulting comb of pumping wavelengths simultaneously pumps several close-lying sR(5,K) transitions in ammonia from the symmetric ground state to the antisymmetric .nu..sub.2 =1 state, providing simultaneous lasing on a plurality of sP(7,K) transitions of different K-values. A plurality of sP(5,K) ammonia laser lines originating in the .nu..sub.2 =1 antisymmetric band and terminating in the depleted lower pump levels are also generated.
    Type: Grant
    Filed: August 22, 1977
    Date of Patent: March 30, 1982
    Assignee: Hughes Aircraft Company
    Inventor: Stephen M. Fry
  • Patent number: 4196403
    Abstract: The disclosed laser employs a working gas comprising ammonia and a buffer gas which is chemically non-reactive with ammonia. A pumping laser beam at a wavelength of 9.2 .mu.m, provided by a carbon dioxide laser tuner to the R(30) transition of the 001-020 band, irradiates the working gas to excite ammonia molecules from the symmetric ground state to the anti-symmetric .nu..sub.2 =1 vibrational manifold. Collisions with buffer gas molecules cause the excited ammonia molecules to undergo intra-molecular energy transfer to a plurality of energy levels in the symmetric .nu..sub.2 =1 vibrational manifold. Laser oscillation is achieved simultaneously on a plurality of .nu..sub.2 =1 to ground transitions in the wavelength range extending from about 9.3 .mu.m to about 13.8 .mu.m.
    Type: Grant
    Filed: August 22, 1977
    Date of Patent: April 1, 1980
    Assignee: Hughes Aircraft Company
    Inventor: Stephen M. Fry
  • Patent number: 4097148
    Abstract: A laser range finder utilizing a mode locked laser for measuring target range with a high degree of accuracy and simplicity by measuring the time of flight of a transmitted pulse utilizing the pulses in the laser cavity for clocking a range counter. The laser consists of mirrors with at least one being semi-reflective, an amplifying medium and a suitable method of mode locking. A switch is provided outside of the cavity for transmitting a gated train of ultra short pulses or a single pulse to a target. The return signal is processed, detected and sent to an electronic circuit which uses the detected signal to stop a counter at the proper range count. The pulses inside the cavity are detected after they pass through one of the mirrors to provide the range counting pulses as well as to energize the switch outside of the cavity at the proper switching time.
    Type: Grant
    Filed: November 24, 1976
    Date of Patent: June 27, 1978
    Assignee: Hughes Aircraft Company
    Inventor: Stephen M. Fry
  • Patent number: 3986117
    Abstract: A test device is used in combination with two selectable resistors to indte when the pulse forming network voltage of a tank laser range finder system is properly adjusted. The test device utilizes a precision temperature compensated current source, an operational amplifier, and a comparator and a lamp driver circuit, electrically coupled intermediate a pulse forming network power supply and a receiver transmitter unit, to indicate overvoltage, undervoltage and null conditions.
    Type: Grant
    Filed: November 13, 1975
    Date of Patent: October 12, 1976
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stephen M. Fry, Himeo B. Masuda
  • Patent number: RE45534
    Abstract: A system and method for providing a vascular image are disclosed wherein a single composite display simultaneously provides a first view of a patient including an angiogram image and a second view including an intravascular image rendered from information provided by an imaging probe mounted on a distal end of a flexible elongate member. A cursor, having a position derived from image information provided by a radiopaque marker proximate the imaging probe, is displayed within the angiogram image to correlate the position of the imaging probe to a presently displayed intravascular image and thus provide an easily discernable identification of a position within a patient corresponding to a currently displayed intravascular image. The resulting composite display simultaneously provides: an intravascular image that includes information about a vessel that is not available from an angiogram and a current location within a vessel of a source of intravascular image data from which the intravascular image is rendered.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: June 2, 2015
    Assignee: Volcano Corporation
    Inventors: Richard Scott Huennekens, Stephen M. Fry, Blair D. Walker, Jon D. Klingensmith, Nancy Perry Pool, Vincent J. Burgess, William R. Kanz
  • Patent number: RE46562
    Abstract: A system and method for providing a vascular image are disclosed wherein a single composite display simultaneously provides a first view of a patient including an angiogram image and a second view including an intravascular image rendered from information provided by an imaging probe mounted on a distal end of a flexible elongate member. A cursor, having a position derived from image information provided by a radiopaque marker proximate the imaging probe, is displayed within the angiogram image to correlate the position of the imaging probe to a presently displayed intravascular image and thus provide an easily discernable identification of a position within a patient corresponding to a currently displayed intravascular image. The resulting composite display simultaneously provides: an intravascular image that includes information about a vessel that is not available from an angiogram and a current location within a vessel of a source of intravascular image data from which the intravascular image is rendered.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: October 3, 2017
    Assignee: Volcano Corporation
    Inventors: R. Scott Huennekens, Stephen M. Fry, Blair D. Walker, Jon D. Klingensmith, Nancy Perry Pool, Vincent J. Burgess, William R. Kanz